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Corrections to the classical Spitzer heat transfer rate between ions and electrons are calculated for 
the case when the ion temperature Ti is significantly higher than the electron temperature T, . It is 
found that slow electrons are partially depleted by their, interactions with the ions, resulting in a 
decrease in the heat transfer in comparison with the Spitzer rate, which assumes perfectly 
Maxwellian electrons. The heat transfer steadily decreases from the classical value as TJT, 
increases; for TiIT, values of several hundred, the heat transfer rate drops to around 60%-80% of 
the Spitzer result. A useful expression for the heat transfer correction factor in the case when 
all of the ion species are at the temperature Ti is found to be Piel(Pi,)spitzer 
-cl+ (m,/mi)(Ti/T,)]3’2 exp{ - [3~5Z~(Z~~~/n~)(m~/m~)(T~lT~)]2’3}~ This expression is quite 
accurate for values of Xi(Zpni/n,)(mJm,)(Ti/Tc) less than about 50 (where mp is the proton 
mass), although it underestimates the heat transfer rate for larger values of TiIT,, and one must 
resort to the more accurate but more complex analytical results derived in the paper. In the event that 
the ion distribution is non-Maxwellian, Ti in the correction factor should be replaced by 2(E,)/3, 
where (Et) is the mean ion energy. 6 199.5 American Institute of Physics. 

I. INTRODUCTION 

Rosenbluth’*2 has shown that natural interactions of elec- 
trons with ions tend to cause a passive depletion of some of 
the slow electrons which promote ion-electron heat transfer, 
thereby decreasing the ion-electron heat transfer rate from 
its classical Spitzer value.324 Unfortunately, Rosenbluth’s 
derivation assumed that the ions were Maxwellian, the elec- 
trons were nearly Maxwellian, and the ion thermal velocity 
was much less than the electron thermal velocity. The object 
of this study is to broaden the scope of the derivation to 
cover even highly non-Maxwellian distribution functions and 
temperature regimes in which the mean ion veiocity starts to 
approach the average electron velocity. 

much more detailed and rigorous calculations which should 
give a good description of the problem under a wide array of 
possible conditions (e.g., various types of ion velocity distri- 
butions, temperature ranges, etc.). Finally, Sets. IV and V 
will apply these general results to the specific cases in which 
the ion distributions are Maxwellian and monoenergetic, re- 
spectively, and derive simple approximate answers as well as 
more accurate analytical results. 

II. BACKGROUND 

In addition to being a useful addition to the fundamental 
plasma physics of ion-electron heat transfer, this study 
should have several practical applications. One of the most 
important applications lies in evaluating the performance of 
advanced-fuel reactor concepts such as inertial-electrostatic 
confinemerjt fusion5 and migma,6 which are intended to op- 
erate with non-MaxweLlian ions that are at much higher en- 
ergies than the mean electron energy. If the ion-electron heat 
transfer could be” reduced appreciably from the classical 
Spitzer value, the electron temperature, and thus bremsstrah- 
lung and synchrotron radiation losses, would be substantially 
reduced, and as a result the performance of such reactor sys- 
tems would be significantly improved. 

,Before presenting a detailed analysis of the ion-electron 
heat transfer problem, it is worthwhile to consider the more 
qualitative results offered by a much simpler model. 

The energy exchange time between a test particle of ve- 
locity u and background particles with a Maxwellian veloc- 
ity distribution chkacterized by the thermal velocity u: 
= dm is defined4 as 

m2u3 
tEE 16~Z~Z’~e~n’ In A 

(u/u;)2 

x[erf~u/u~)-(u/u~)erf’(u/u~)]’ 

in which the error function is 

(1) 

erf(w)= emwr2 dw’, 
. . . 

Before the main results of the paper are presented, Sec. the definition erf’(xj=d[erf(x)]/dx has been made, and in 
II will offer a brief and fairly intuitive look at the ion- all other cases the primes denote the background particles as 
electron heat transfer problem. Then Sec. III will present opposed to the test particle. 

“‘Present mailing address: c/o 501 West A St., N. Little Rock, Arkansas 
72116. 

One finds the following electron-ion collision time t$ 
and electron-electron collision time tF for electrons of ve- 
locity u in the limit U,i4UQU,, : 
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m2v3 
t;;= e4 

V2 

16aZfe ni In A z’ 

W12V3 3 GJ,, 
tFE 16re4i, In A 4v 

(3) 

(4) 

In the case of electrons for which t$< tr, collisions with the 
ions will tend to have a greater effect than collisions with the 
faster electrons. As may be seen from the energy exchange 
times, this constraint is satisfied for electrons whose speeds 
are less than a certain critical velocity u, , 

,3<3J;;Zfni 2 3 ~__ = 
4 4 

vfivre-vc~ (5) 

Now the form of the modification to the Spitzer heat transfer 
rate may be obtained in a straightforward and intuitive man- 
ner. The power transferred from the ions to the electrons is 
essentially proportional to the number of electrons moving 
more slowly than the ions. Since it is assumed that vti+vt,, 
the energy transfer rate Pi, will be proportional to f,( O), the 
value of the electron velocity distribution at u = 0. 

For v > v, electron-electron collisions dominate and the 
electron distribution assumes what is essentially its usual 
Maxwellian distribution, 

V2 
f,(v)-xp i 1 - -2- 

Vt, 
(for v>v,). 

On the other hand, below the critical velocity the dominance 
of collisions with ions tends to upscatter some of the elec- 
trons to higher energies and thereby flatten out the electron 
distribution at a constant value, namely its value at the criti- 
cal velocity: 

V2 
f,(v)“exp ( i - + 

Ute 
(for v<v,). 

Since Pi,xf,(0), one may see that the actual heat transfer 
rate in comparison with its classical Spitzer value is 

pie 4 

( Pie)Spitzer = exp ( i - z 

C--- 
’ (8) 

While the above calculation yields a value of C 
= 3 G/4, the true value of C cannot be found from this 
simple calculation. This limitation is caused by the uncer- 
tainty in the precise velocity at which the electron distribu- 
tion may be considered to flatten out. All that can be said for 
now is that C appears to be a constant of order unity. 

Having taken this first enlightening look at the problem, 
one may now appeal to more detailed calculations to ascer- 
tain the accuracy of this initial computation, determine the 
actual value of C, and extend the analysis to other cases not 
covered in this simple example. 

It should be remarked from the outset that only colli- 
sional interspecies energy transfer will be considered. Vari- 
ous instabilities which might be driven by substantial devia- 
tions of the plasma from thermodynamic equilibrium and 

which would further promote energy transfer will be ignored; 
thus these calculations will serve to set a lower bound on the 
ion-electron heat transfer rate. 

111. GENERAL DESCRIPTION OF THE PROBLEM 

In this section will be presented a description of how the 
Fokker-Planck collision operator may be applied to the 
present problem in order to obtain the equilibrium particle 
distribution functions and the interspecies energy exchange 
rate. 

A. Rosenbluth potentials for general isotropic 
distributions 

Consider the distribution function f (2 for a given particle 
species cw; the distribution function is normalized such that 

I 
d3vfa(v)=n,. (9) 

As presented by Rosenbluth,7.8 the collisionally induced evo- 
lution of the particle distribution functions is governed by the 
Fokker-Planck collision operator, 

@Lx ( i at co1 = - c L,Vv.[ fJv.p- ; v,.&V,v&!,~~] P 
=c C,,=-V,*x Jap, (10) 

P B 

in which Cap is the collision operator just between two spe- 
cies cy and p, Jas is the collisional velocity-space flux, the 
sums over all p include P=a, 

47rZ2Z2e4 In A 
rnp= a B2 , 

me 
(11) 

and the Rosenbluth potentials h+ and gap are defined as 

m,+mp h&v)= - “B I CPU g$; (12) 

g&?(v)= ~3$9wIV--l, I (13) 

with the useful relation 

(14) 

For isotropic velocity distributions, the Rosenbluth potentials 
may be rewritten, as shown in Eqs. (Al) and (A2) of Appen- 
dix A, producing the results: 

haB(v)=4n( yj[ /;du f&d/ ;-uj 

+ 
I 

%.f fp(ub ; 
0 I 
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sap(u)=~ [ ];du f@)( ~+3u%-3.3-uv2) 
f I -du fp(u)(uu2+3u3) . 

0 1 
B. Interspecies heat transfer rate 

Define the rate of energy transfer per volume from the a! 
species to the p species to be P+ : 

Pap=-/ d3v(im,u2)Cap. (17) 

By using the definition of the Fokker-Planck collision op- 
erator and integrating by parts, one fmds 

For isotropic velocity distributions the energy transfer be- 
comes 

I 

m 

Pap=64n3Z2$$e4 In A dvv2 f, 
0 

du fp(u)u2- $ 
s 

mdu fp(u)u . 
u 1 

(19) 

C. Equilibrium distribution functions 

With the aid of Fq. (14), the collision operator between 
two species may be rewritten as 

cap= G-&- ; &J -v%g,p- g&- .fJ’,h,p . ct P I 
cm 

For isotropic distribution functions the collision operator is 

1 d 1 cff,=rff, 2 I Jf, d2gap ma 
7% 

v -- 
2 &) 7- -fa% 

m,+mp I 

= 1 6,rr2ZiZse4 In A 
2 ma 

X 

I “dv’ fp(v’)vr2 . 
0 I 

(21) 

Therefore, the collisional velocity-space flux from Eq. (10) 
is found to be 

J+= - 
16rr2Z2,Z;e4 ln A df, 1 

~- 
2 

me dv 3 

I. 
cm 

where ? denotes the “radial” direction in velocity space. 
Assuming that there are no external forces or spatial gra- 

dients, for f, to be in equilibrium one must have 
(df nldt)col.=O. For isotropic velocity distributions, this re- 
quirement reduces to C, J,=O, or equivalently 

if, 
-= -faiv) 

3Bp[Z~(m,lmp)(llv2)J~ dv’fp(u’)vr2] 
dV [(lIv3)J-t; ,dv’ Z, Z&(V’)V’~+~-; dv’ X, Z&(v’)v’]’ (23) 

For the case of electrons interacting with ions, the electron 
distribution function will acquire a quasiequilibrium shape 
while its mean energy is still in the process of changing due 
to energy exchange with the ion species. Therefore, one may 
use Eq. (23) to find the electrons’ “equilibrium” distribution 
function far which may then be used in Eq. (19) to arrive at 
the rate of interspecies energy transfer, 

I’(. ION-ELECTRON HEAT TRANSFER FOR 
MAXWELLIAN IONS 

En this section the general ion-electron heat transfer for- 
mulas of the previous section will be applied to the specific 
case in which the various ion species which are present have ’ 
Maxwellian velocity distributions. 

Note that f ,( v) cannot increase with increasing v in any 
range of velocity space if the distribution is to be held in 
equilibrium (or quasiequilibrium) solely by collisions with 
other species (even if those other species have fixed and/or 
non-Maxwellian distribution functions). Thus one cannot 
“dig a well” in the electron distribution to cause a radical 
depletion of the slow-moving electrons which draw energy 
away .from ions, unless one resorts to particle sources and 
sinks, externally applied electromagnetic fields, transient op- 
erating conditions, etc. 

A. General heat transfer for Maxwellian Ions 

For Maxwellian ions with thermal velocity vti 
5s J--T-T 2T,lm,, the distribution function is ;ii. 

.fiCv ) = 713Yiv ;3 exp 
i 1 

- 2 ‘- 

It is assumed for the time being that different ion species in 
the plasma may have different temperatures. L 

Substituting Eq. (24) into the expression for the ion- 
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electron heat transfer, Eq. (19), and integrating by parts, one 
finds that the power per volume transferred from the ions to 
the electrons is 

factor to the Spitzer heat transfer rate which will reduce to 
the answer obtained by Rosenbluth’.2 in the proper limit. 

P. = 16rr2e4 In A re I 

Z’ni 
mdvv2 feCu)c +y- 

i I 

x,~~~~xp(-~)-~e~(~)]. (25) 

7. Relationship between slow electron depletion and 
reduction of ion-electron heat transfer 

Before proceeding with the main line of the derivation, 
one of the key arguments used in the more intuitive analysis 

Now one needs to find the equilibrium electron distribution 
of Sec. II will now be confirmed; in particular, it will be 

function f,(u) to use in Eq. (25) for the heat transfer. By 
shown that the ion-electron heat transfer rate is essentially 

substituting (24) into Eq. (23) and again employing integra- 
proportional to the number of electrons moving more slowly 

tion by parts, the differential equation determining fJv) re- 
than the ions, or in other words approximately proportional 

duces to 
tof,(v=O). 

For v,,%v,~ one may assume that the electron distribu- 
u2 !J 

du’ fe(v’)v’4- 3 
I 

o dv’ f,(v’)v’ 
tion shape is governed by electrons with velocities u such 
that v + vti ; therefore, Eq. (25) becomes 

dv’ fe(v’)v’ 
16r2Z?e4n. In A T. 

Pie= Irni ’ ~~.f,W- /;dv feWvl. 

-08) 

For Maxwellian electrons Eq. (28) reduces to 

(26) 

for the case of electrons in the presence of multiple Maxwell- 
ian ion species. 

If Eq. (26) is solved numerically and its solution for the 
equilibriumf,(v) used with Eq. (25), one will find the exact 
value for the heat transfer to electrons from Maxwellian ions 
for any choice of parameters. However, to obtain useful ana- 
lytical expressions and simplified numerical results, further 
approximations are required. 

One should also note that by using Eq. (25) and assum- 
ing that the electrons remain perfectly Maxwellian (and al- 
lowing the ratio of ion and electron temperatures to remain 
arbitrary), the result first found by Spitze?V4 may be ob- 
tained: 

lPw)Spitzer= 
4 J2?rmim,Zfe4nine In A 

(miT,+m,Ti)3’2 
(Ti-‘Z’e)* (27) 

1 67r2Z2e4n. In A 
Pie=tPir)Spitzer= ’ ’ 

mime 
(Ti- Te) 

x[fe~“)~Maxwellian* (29) 

Equation (29) is clearly the u,,%vli limiting form of the full 
Spitzer result of Eq. (27). Assuming that the electrons do not 
deviate too much from a Maxwellian distribution, then one 
may use 

i 
73 

0 
dvv ~&J+&(O) (30) 

in Eq. (28). Dividing the resulting expression by Eq. (29) 
produces rhe result 

(31) 

Because substantially non-Maxwellian electron distributions 

This classical Spitzer energy transfer rate will serve as a 
useful basis for comparison with the modified rate described 
by Eqs. (25) and (26). 

will arise only when Tint, (causing interactions with ions 
to interfere strongly with the electron distribution), the cor- 
rection to the Spitzer rate will reduce to (3 1) even when the 
assumption underlying Eq. (30) breaks down: 

B. Modification of Spitzer ion-electron heat transfer 

If the electrons moving more slowly than the ions are 
partially depleted due to energy upscattering from the ions, 
the heat transfer rate will be less than the Spitzer result. To 
examine this effect, it will be assumed that the ions are Max- 
wellian and are moving significantly more slowly that the 
electrons, but the electron distribution will not be assumed to 
be Maxwellian. This calculation will produce a modification 

pie (Tilmt)fJO) f,(O) 

( Pie)Spitzer a (Tilm,)[Jre(O)lMaxweliian= Lfe(“)lMaxwellian’ 
(33 

Therefore, when the electron distribution function is altered 
so that fewer than the Maxwellian number of electrons have 
very slow speeds, the heat transfer rate is reduced accord- 
ingly. 
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2. Derivation of electron distribution and heat 
transfer 

Consider electrons with velocity u such that 
u,,Qu4u,, . In this case, one may make the approximations 
exp( -u2/u&+0 and erf(ulu,Jt 1 in Eq. (26). 

Using these approximations, the differential equation for 
the electron distribution becomes 

Tg i 2 -@Q Ti+l 3 
i 4& p 0 

fe(u’)u’ 1 +f,(rJ) $ [ $(0)+x gz =o. 1 (33) 
i I 

Assuming that the electrons are nearly Maxwellian so that 
Maxwellian values may be used for the electron-related 
quantities within the brackets, one obtains 

(34j 

The form of Bq. (34) suggests that one define a critical ve- 
locity u, for the electrons as 

$53 

3\/;; S -+ $qizi,.. 
i 

(35) 

This definition is the same critical velocity which was found 
in the introductory section. By using the critical velocity and 
assuming that all of the ion species are at the same tempera- 
ture Ti, IQ. (34) may be solved to findf,(u): 

f,(u)=f,(O)exp 
1 1 

- 7 
u du’ u’(~‘~+(T,lT~)u~) 

e 0 1 (U’3+u;) . 
(36) 

One may findf,(O) from the normalization condition in Bq. 
(9). It should be realized that the derivation of this distribu- 
tion function assumed that u,iQu 4ut,. 

The integral in the exponent may be evaluated? 

J, (U’I 

12 E--U - 
2 ( 

12 =-u + 
2 i 

r- 
- -\/3 tan -t(5)-~tan’j~)]. (37) 

It is clear from Eq. (37) that in the classical limit (u,-+O) 
the distribution function becomes the usual Maxwellian. 

Now the electron distribution function found above may 
be used in the expression from Eq. (25) for ion-electron heat 
transfer in the presence of Maxwellian ion species. Making 
this substitution and dividing by the Spitzer energy transfer 
rate from Eq; (27), one obtains 

I 

pie 

C PiA spitzer 
wecTi?T.) ( l+~~)liz[ /rduu2 exp[ -F /: d”‘u’(~~~3~~{~Ti)u’)] 

x[$ ( %)3’2 g exp(-$) - 2 erf(k)]}[ /iduu” exp( -: J: d”‘u”~~~3~~~~Ti’u”}]-1~ 

Note that u -u,~ corrections have been retained so that the 
correct Spitzer rate will be recovered for u z-+ 0. 

3. Useful approximate answer 

A simplified answer can be extracted from Eq. (38) by 
analytical means. 

In the first integral of Eq. (38), the integrand is appre- 
ciable only for u of the order of uti or smaller, so one may 
assume that u and u ’ are of the order uti and thus much 
smaller than u c. In this limit the integral becomes 

X( ~)“‘$ev( $) 
aJ%duu’ exp[ - ,(1+$$]$ 

Ti 
-utc -1 

172, 

The integrands of the remaining integrals in Eq. (38) are not 
restricted to the u - u ti. velocity range [they do not have the 
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exp( - u ‘/z$) term], so in general the electron velocity u in 
these integrals extends to the order of vt,, or much larger 
than v, . In this limit, the integral in the exponentials of these 
terms may be approximated by using Eq. (37), so that 

v dv’v’(v’3+(T~lTi)v~) 1 
(v’3+u;) 

(40) 

Therefore the remaining integrals in Eq. (38) may be ap- 
proximated as 

Jomduu Ute erf(f-) 

(41) 

Xexp -- 
i I 

wufe~ex~~(l-~) !?$I; 

[omduu2 exp[ _ z I,” du’u’(u’3+(~,lr,)uj)] 
(d3+u;) 

-exp( $( 1-g) ~}~~duu’exp( -g] 

+($)““exp[ $( l-2) q]- (42) 

Using these approximations, Eq. (38) becomes 

X exp / - 

I i 
2n2 Zf?li m, Ti z/.3 FE,&. ’ 

i 1 I 

(43) 
where some corrections of order vfi/UT, have been neglected 
in the asymptotic evaluation of the integrals. 

For the case in which only one ion species is present 
( Zipzi= n,) and the temperature ratio TiIT, remains moder- 
ate, this expression clearly reduces to precisely the answer 
obtained by Rosenbluth:* 

(Pie)Rosenbluth 27r2 me Ti 2’3 

(Pie)Spitzer 
Al- ~ZiinT 

( I 
. (4.4 

i e 

It is useful to realize that 2~/35’4-5.000. 
Now the significance of this work may be seen. While 

Rosenbluth’s answer is just an expansion valid for Tj not 
much larger than T, (and indeed takes on a nonphysical 
negative value if one chooses TiIT, to be sufficiently large), 
the result presented in Eq. (38) and even the more approxi- 

0.8 

1 0.6 
3 
$ 0.4 

E 

0.2 

0 

FIG. 1. Electron distribution for pure hydrogen (‘H) plasma with (a) 
T,/T,= 1, (b) 10, (c) 100, and (d) 1000. 

mate one of Eq. (43) are considerably more accurate, and 
they give sensible answers even for large Ti/T,. The accu- 
racy of Eq. (38) will next be demonstrated by numerically 
integrating this expression and comparing the result with the 
output of a Fokker-Planck code for a wide range of TilT, 
values. 

4. More accurate answer via numerical integration 
Mathematical’ has been used to plot the normalized dis- 

tribution function from Eq. (36) for various values of TiIT, 
(with Zir 1 and As 1 for all of the curves). Figure 1 shows 
the plots for TilT,= 1, 10, 100, and 1000. AS may be seen in 
the figure, the flattening of the electron distribution at small 
velocities becomes more pronounced as the temperature ratio 
increases, as expected, [Some of the approximations made in 
obtaining Eq. (36) begin to break down for TilT,= 1000, 
but the general appearance of the distribution function at 
these parameters is still highly revealing.] 

The correction to the Spitzer rate as described by Eq. 
(38) has been calculated via numerical integration with 
Mathematics. The resulting graphs are shown in Figs. 2-4 
for the cases in which the plasma consists of pure light hy- 
drogen, pure deuterium, and pure helium-3. These results for 
the case of Maxwellian ions are contrasted in the graphs with 
the results for the case of monoenergetic ions, which will be 
derived in the next section. 

As may be seen in the graphs, the correction factor be- 
gins to level off for large TiIT,. This behavior is to be ex- 
pected, for if one continues to hold the ion distribution per- 
fectly Maxwellian and redefines T, to be 2/3 of the mean 
electron energy (even when the electron distribution be- 
comes non-Maxwellian), the ion-electron heat transfer 
should return toward the Ti/T,--tco Spitzer rate for ex- 
tremely large values of TJT, (when b~i%u~~, so the ion ve- 
Iocity is the dominant determinant of the relative collision 
velocity). At TilT,= 1000, this upward return back toward 
the Spitzer formula has not yet begun [except for the case of 
light hydrogen with monoenergetic ions, as shown by curve 
(a) of Fig. 23, but the correction factor is beginning to level 
off in preparation for the upward turn. 
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1 
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0.2 

0 t 1 1 10 100 1000 
TUT0 

PIG. 2. Correction factor to Spitzer ion-electron energy transfer rate for pure 
hydrogen (‘H) plasma as a function of TJT, : (a) monoenergetic ions, (b) 
Maxwellian ions, (c) approximate answer from Eq. (45). 

Along with the plots based on Eq. (38), Figs. 2-4 also may see in the graphs, this approximate answer matches the 

present graphs of the more approximate but more readily full analytical results quite well for temperature ratios such 

usable answer, that 

pie 

( i! 

312 

iPie)Spitzer 

cd I+>; 

e 

X exp . 

(45) 

Note that the coefficient in the exponent has been changed 
from the previous approximate value of 5.00 to the present 
value of 3.5 in order to match the complete results more 
accurately over a wider range of values of Ti/T, . As one 

PIG.. 4. Correction factor to Spiker ion-electron energy transfer rate for 
pure helium-3 plasma as a function of ri/r, : (a) monoenergetic ions, (b) 
Maxwellian ions, (c) approximate answer from EQ. (45). 

1sc 
ZFni mp Ti 
- - -650, 

i n, mi T, 
(46) 

in which mp is the proton mass. 
Figure 5 again shows the numerically integrated result 

for the case of deuterium with a Maxwellian ion distribution, 
but now that curve is compared with the results obtained by 
Galambos”T12 using the PPPAC Fokker-Planck code.‘3V14 It 
may be seen that there is fairly good agreement between the 
present analytical results and the code results for the heat 
transfer rate. Methods for obtaining even more precise ana- 
lytical expressions for the energy exchange rate are discussed 
in Appendix B. 

0.8 0.8 

PIG. 3. Correction factor to Spitzer ion-electron energy transfer rate for 
pure deuterium plasma as a function of TJT, : (a) monoenergetic ions, (b) 
Maxwellian ions, (c) approximate answer from E!q, (45). 

10 100 1000 

TVTe 

FIG. 5. Comparison of analytical result from Eq. (38) (line) with code 
rest&s (points) from “*t2 for deuterium with Maxwellian ion distribution. 
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V. ION-ELECTRON HEAT TRANSFER FOR 
MONOENERGETKZ IONS 

Now the heat transfer will be calculated assuming that 
the ions all have velocity vi, or energy E,= miual2. This 
calculation is relevant to the evaluation of fusion concepts 
such as those proposed by Bussard5 and Maglich,(j which are 
intended to operate with nearly monoenergetic ion beams 
that have energies much greater than the mean electron en- 
ergy. (In spherically convergent systems of the type proposed 
by Bussard, the density generally varies as roughly llr2, 
where r is the radial distance from the center of the spherical 
plasma.5 Therefore most of the collisions occur in the dense 
central region, where particles are coming from and return- 
ing to all directions, and so the assumption of isotropy made 
in the present calculations is valid. Anisotropy could be a 
more serious concern in Maglich’s migma configuration,6 al- 
though the present isotropic calculation may be considered a 
first-order treatment of the plasma behavior in that device.) 

A. Derivation of electron distribution and heat 
transfer 

For isotropic but monoenergetic ions, the distribution 
function is 

fi(*)= 2 s(*-Vi)* I 
By substituting this distribution function in Eq. (19), the 
power per volume transferred from the ions to the electrons 
is found to be 

P, =16rr2Z?e4n. In A re 1 t dv’ fe(v’)d2 

(48) 

Using the monoenergetic ion distribution together with the 
earlier general formula for the equilibrium electron distribu- 
tion function, Eq. (23), one obtains 

Jfe 1 1 -- dv3 1 7 J udvr fe(v~)v~4+~ 
0 i 

2 v~e(v--Vi) 

f 
I 

rdvt f,(v’)v’+~ 
Z?nj 

u i 
&&, 8(vi-v) +fe(V) I 1 

1 x7 [ 1 udvr fe(Ur)vt2+~ 
Zfni m, 1 

0 i 
z z 2 e(v-vi) 

I 1 
= 0. (49) 

For Vi substantially smaller than vt, , the electron distribu- 
tion will be governed by the equation for the overwhelming 
majority of the electrons which have v > u i, so one may set 
e(v--uJ=l and0(v,-v)=OinEq.(49)inordertofinda 
good expression for f,(v). However, if ui is comparable to 
v re, phenomena occurring on both sides of v = ui must be 
taken into account. 
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B. Useful approximate answer 

For electrons with v,,% v > u i, Eq. (49) may be approxi- 
mated by 

2 7 -gg+ f j-id*’ fe(v~)v~ 1 I 
1 v3 

+fe 7 
i 
,f,(o)+x 

i 
$2 =o. 

I I 
(50) 

Note that this equation for electrons interacting with mo- 
noenergetic ions is exactly the same as Eq. (33) for electrons 
interacting with Maxwellian ions in the corresponding veloc- 
ity range (u,,%-u~u,~), provided that one uses v$-+2v~/3, 
or Ti--t2Ei/3. 

Accordingly, the critical velocity for the electrons is now 
defined as 

v:s~G c ‘3% Ei Tp. 
J- i ne mi me 

Similarly the electron distribution function is 

X dv’v12 

(51) 

ur du”u”(v”3+ $(TelEi)v,3) 

(vM3+ v,“, 

(52) 

The power density transferred from the ions to the electrons 
may be approximated as 

Pie== 
16T2Zfe4Ei In A 

mi 
- /o=dv feW*]. 

(53) 

This expression is identical to Eq. (28) provided that one 
again makes the identification Ti-+2Ei/3. Because of the 
exact correspondence between Eqs. (50) and (53) and their 
predecessors in the Maxwellian ion case, the Maxwellian 
results may be used here, provided the proper substitution is 
made for the ion temperature in each case. 

By analogy with the earlier Maxwellian results, a useful 
approximation for the heat transfer is (taking the numerical 
coefficient in the exponential to be 3.5~2/3=2.4) 

(541 
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C. More accurate answer :. 

By using the electron distribution function of Eq. (52) in Eq. (48) and dividing by the Spitzer rate, a more,accurate 
expression for the correction factor is found to be 

Mathematics was again employed in order to numerically 
integrate and graph this improved expression for the ion- 
electron heat transfer rate in the case monoenergetic ions. 
The results are shown in Figs. 2-4 (along with the results for 
the Maxwellian ion case) for plasmas consisting of pure light 
hydrogen, pure deuterium, and pure 3He, respectively. In the 
graphs, the effective ion temperature has been defined as 
T1~2Eif3. 

Since the most important feature about the interactions 
of the ions with the electrons is that the ion speeds are typi- 
cally much smaller than the electron thermal speed, one 
would expect that the heat transfer rate would depend only 
on the mean ion energy and not the particular ion distribution 
shape (except at very large temperature ratios, Ti/T,- 1000, 
when the mean ion and electron speeds start to become com- 
parable). This behavior is indeed quite evident in Figs. 2-4. 

Based on the comparison with the analytical and code 
results for Maxwellian ions, this monoenergetic ion answer 
appears to be fairly accurate. However, techniques for ob- 
taining an even more precise analytical answer for the mo- 
noenergetic ion case are discussed in Appendix B. 

VI. CONCLUSIONS 

Corrections to the classical Spitzer rate of ion-electron 
energy exchange were calculated for the case of large Ti/T, 
ratios. The results of these calculations are substantially 
more accurate and more broadly applicable than the original 
result of Rosenbluth.’ 

A useful expression for the correction factor is 

pie 

(Pie)Spitzer 

(56) 
This result assumes that all of the ion species are Maxwellian 
and at the same temperature Ti. If the ions are non- 
Maxwellian, an effective ion temperature for use in the 
above equation may be defined in terms of the mean ion 
energy, Ti=2(Ei)/3. Note that this simple approximation 
yields accurate results only for the temperature range 

Z;ni m T. 
l<C - -JL<50. 

i ne mi Te 
(57) 

For temperature ratios larger than this range, the approximate 
answer given above begins to underestimate the actual heat 
transfer, so in such cases one should use the results of one of 
the more sophisticated calculations presented in the paper. 

These more accurate analytical expressions for the cor- 
rection factor were numerically integrated and graphed using 
Mathematics, and the results were summarized in graphs for 
plasmas of various compositions. The results generally agree 
with those obtained by Galambos11~‘2 with a Fokker-Planck 
code. 

As presented in Appendix B, iterative methods may be 
employed if one desires to obtain even more accurate ana- 
lytical expressions for the correction factor for the two cases 
of Maxwellian ions and monoenergetic ions. 

The correction factor derived in this paper may be incor- 
porated into calculations of electron energy balance and 
bremsstrahlung radiation in order to improve the accuracy of 
those calculations.i5 
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APPENDlX A: FOKKER-PLANCK CALCULATIONS 
FOR GENERAL ISOTROPIC VELOCITY 
DISTRIBUTIONS 

1. Rosenbluth potentials 

For isotropic velocity distributions, the Rosenbluth po- 
tentials (12) and ( 13) may be integrated over all angles in 
velocity space as follows (0 is the angle between u and v): 

X 
duu2fp(u)&2+u2-2uu cos 0 T 

UV I 0 

m,+mp z =- 
mfl f 0 

(du 4~u2)fp(u) 

X 
ucqv-u)+La(u-v) 

UZJ 1 
, (Al) 

in which 8(x) is the unit step function, 
Similarly, one finds that 

&rp(v)=2~ fp(u) I u2+v2-2u~ cos e u2 sin 8 du de 

=2n- 
[f 

duu2 fp(u)(u2+v2-2uv cos 8)3f2 w 
3uv I 0 

=f [;(d% 47ru2)fp(u) 

X 
U(U~+3u~)e(v-uU)+u(U~+3u~)e(U-v) 

uv 

WI 
The following derivatives of the Rosenbluth potentials are 
also needed for the calculations presented in this paper: 

2= -47i( F) ; /;du fp(u)u2; (A3) 

%=$y[ J;du&(u)(3u’-$-2uvj 

s 

3c 
+2v 

0 
du fp(u)u 

I 

I 

co 
du fp(u)u4+ du f&h . 

” 1 
(A4) 

2. Collision operators 

The collision operator between two species which was 
given in Eq. (21) may not seem immediately familiar, so it 
will now be explicitly shown that this expression for the 
collision operator reduces to a previously published result. 
Calculating the divergence in Eq. (21), one finds 

16rr2e4 In AZ2Z2 d 
CC+= mtv2 a ‘%(vI( $$;[; f~duf~(u)u4+j:dufa(u)u]+f,~~ /)uIpW’i) 

= 16r2e;;;z’z’; [ 2; [; /;du fp(u)u4+v21ffdu Sg(u)u-v2[;du &(u)u]+fa z /fdu faW2} 

16rr2e4 In hZ2Z2 2 = 3m2, a ’ [ $[$ f~d./p(U)U’+f~duf~(U)U] 

+$[ /;dufp(ul( 3 z$-$j+; /;duf&b]+3 ~/,(v)fp(v,). (A51 

For like particles the collision operator becomes 

16r2e4 In AZ4 2 
C,,= 3m2, j ~[~ j:““f.cu).a+~~duf,(u)u] 

+2[ [;dufll(+ $-$j+; ~~dufa(U)u]+3~~(U)12) 

8r2e4 In AZ4 
= 2 

me 
(2 (5~[~f~duf,(u)u4+f~duf~(u)u]-i-2Li,(v)li 

4 Jfc2 
+3vdv du fa(~)u- /)ufcr(4u( l-;j’( l+E)]}. 

This last expression for C,, matches Eq. (1) of Ref. 8. 
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APPENDIX 8: EVEN MORE ACCURATE (BUT NASTIER) HEAT TRANSFER EXPRESSIONS 

1. Improved answer for Maxwelllan ion case 

It should be possible to obtain an even more accurate answer by returning to the full nonlinear first-order differential 
equation for the electron distribution function in the presence of Maxwellian ions, Eq. (26). This first-order equation for-f, may 
be iterated, so that the coefficients are found by using a less accurate expression for the distribution, which will be denoted 
f,* : 

Jfe 1 

i I- 

u 
2 co 

dv3vo 
du’ f;(ur)ut4+; 

I 
du’ f;(u’>u’+~ 

II i 

2:: [$erf( kj-kexp[ -$j]) 

+fe(u) 
II 

,Odu' f:(ur)d2+6 
i 

S~[~e~izj-~exp~-~j]]=O. 
(Bl) 

Solving this equation, the iterated solution for the distribution function expressed in terms of the previous iteration’s solution 
is . 

f,(u)=f,(Ohp -1” ( o [ du~u~(3~~~u~/f~(u~~)u~r2~~ 

i 

I 

m 
X du” f;(u”)u”4+u’3 “,cw f~(u”>u”+~ 

i 

‘~~~[~e~(~j.-~exp~-~j])~‘])~ (B2) 

One may then find f,(O) directly from the normalization condition as usual. I 
If one begins the iteration process by assuming that f:(u) is Maxwellian and characterized by the thermal velocity ute , 

then the distribution function of Bq. (B2) becomes 

fe(u)=fe(0)eQ -2 [ j:g( ~[$&(~j--&fw( -$j]+F ~~~[eff[~j 

---j-~ex~[ -$j])( ~[$f($j-f+3f--$j] 
+C i $2[erf[$j--J--exp( -$j]]-I]]. (B3) 

I 

Note that by using the series expansion for u ’ < u le one finds Even more accurate distribution functions could be 

$erf(g)-gexp( -2) 

found by using Eq. (B3) or a simplified form of it as the 
basis for further iterations with Eq. (B2). 

Once a distribution function of the desired accuracy has 
been obtained, it can be used to find the effective electron 
temperature, as given by Bq. (B6), and the correction to the 
Spitzer ion-electron energy transfer rate, 

=jo, ‘-;‘l.“+L (&)(LJ’“+2(g)’ 
-;(~)‘+;(~)‘-O[ (&)9)+-- . (B4) 

By taking just the first term of this expansion, making the 
approximation u % u fi , and defining the critical velocity u C as 
before, the distribution function of Eq. (B3) reduces to the 
simpler form used in Sec. IV. 

-Ferf($)]][ /:duu’E]-‘. 

OW 
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Another possible improvement involves refining the defini- 
tion of the electron temperature. For the case of significantly 
non-Maxwellian electrons, it is desirable to accompany the 
heat transfer expression by a definition of the effective elec- 
tron temperature 0,~ 2( E,)/3, where (E,) is the mean en- 
ergy per electron. One finds that 

f&2 I =wu 4m2) ;meu2 f,(u) 
c 0 ( 1 

= 2 T s,” h44 f,(u) 
3 c ,; dr.ad2 f,(u) ’ 

WI 

in which I(=uIu~, . 
Numerical integration with Mathematics revealed that 

using the distribution function of Eq. (B3) produces only 
minute alterations in the graphs which were presented earlier. 
Likewise, plotting the heat transfer correction factor versus 
T,/8, (as opposed to TiIT,) only makes very slight alter- 
ations in the curves, since T, and 8, only begin to diverge 
for large values of TiIT, , where the correction factor is 
nearly flat with respect to the temperature ratio. 

More appreciable improvements might be gained from 
iterating the electron distribution function at least once more 
or by expressing all of the integrals in terms of 8, instead of 
T, (being careful to maintain self-consistency with the new 
definition throughout the derivation), but these possibilities 
were not tested computationally, as the resulting expressions 
could not be numerically integrated within a reasonable time 
on the sort of computers presently available to the authors 
(Macintosh Quadra 6 10). 

2. Improved answer for monoenergetic ion case 

As in the case of Maxwellian ions, an even more accu- 
rate answer may be obtained by returning to the full nonlin- 
ear first-order differential equation for the electron distribu- 
tion function, Eq. (49), and iterating. The next iteration 
expression for f, written in terms of the previous iteration’s 
less accurate expression, f,* , is 

f,(u)=f,(O)exp ( - 1” o [w[ 3/;du” f:w)dQ 

+C 
3Zffli m, 
F z O(u’-ui) 

i I 
1 VP 

X 1, cc 
du” fr*(U”)U”4+U’3 

0 I vr 
du” f,*( U”)U” 

+c 
Z?ni 
z U?E)(U’-Ui) 

i I 

r3 

+) @(Vi-U’) 

-1 II II 2 
I 

037) 

As usual f,(O) is calculated directly from the normalization 
condition. 

If one begins the iteration process by assuming that 
f z (u) is Maxwellian and characterized by the thermal veloc- 
ity uI,, then the distribution function of Eq. (B7) becomes 

fJ~)=f.~OMpj --2fJ y [ S [ $ ejgj 
, 

U 
I2 

-kexp -T +C --- t :I1 3J;; Z:ni ??l, 

ute 4 
i 4 mi 

I - & exp i 11 J;; zslj -g +c yf 
tr i e 

i 

2 I3 

X z @(U’-Ui)+ k e(Ui-U’) 

-1 II II , 

@8) 
Note that by using the series expansion for vi< u ’ < ute this 
distribution function reduces to the simpler one found given 
in the previous section. 

Even more accurate distribution functions could be 
found by using Eq. (B8) or a simplified form of it as the 
basis for further iterations with Eq. (B7). 

Once a distribution function of the desired accuracy has 
been obtained, it can be used to find the correction to the 
Spitzer ion-electron energy transfer rate, 

pie -j/&E;T) j1+;~$)‘” 
(Pie)Spitrer e 

Xmil I 1 vi ,uu,few -- 
I 

mduu fe(o) 
- me Ui 0 f,(O) ut f,(O) I 

X[ $j ~j+~u’~]-‘, (B9) 

as well as the effective electron temperature, as given by Eq. 
036). 

‘See AIP Document No. PAPS PHPAE-02-1873-S for 8 pages of M. N. 
Rosenbluth, Energy Exchange Between Electrons and Ions. Gulf General 
Atomic Report GAMD- 17 10 (1960). Order by PAPS number and journal 
reference from American Institute of Physics, Physics Auxiliary Publica- 
tion Service, Carolyn Gelbach, 500 Sunnyside Boulevard, Woodbury. New 
York 11797-2999. Fax: 516-576-2223, e-mail: janis@aip.org. The price is 
$1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 30 
pages, and $0.15 for each additional page over 30 pages. Airmail addi- 
tional. Make checks payable to the American Institute of Physics. 

*M. N. Rosenbluth, Bull. Am. Phys. Sot. 21, 1114 (1976). 
3L. Spitzer, Mon. Not. R. Astron. Sot. 100, 396 (1940). 
4L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1956); 
also, 2nd revised ed. (Wiley, New York, 1962). 

‘R. W. Bussard, Fusion Tech. 19, 273 (1991). 
6B. C. Maglich, Nucl. Instrum. Methods A 271, 13 (1988). 
‘M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 107, 1 

(1957). 
‘W. M. MacDonald, M. N. Rosenbluth, and W. Chuck, Phys. Rev. 107.350 
(1957). 

1884 Phys. Plasmas, Vol. 2, No. 6, June 1995 T H. Rider and P. J. Catfo 

Downloaded 29 Sep 2004 to 129.55.200.20. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



‘I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products “5 D. Galambos (private communication, 1994). 
(Academic, New York, 1980). “h. G. McCoy, A. A. Mirin, and J. Kil ieen, Comput. Phys. Cornmun. 24, 

“Wolfram Research, Inc., Mathematicu, Version 2.2 (Wolfram Research, 37 (1981). 
Champaign, L, 1993). 14A A, Mirin, M. G. McCoy, G. P. Tomashke, and J. Killeen, Comput. Phys. 

“3. D. Galambos, Ph.D. thesis, University of Illinois at Urbana/Champaign. C~mmun. 51, 373 (1988). 
1982. “T. H. Rider, Phys. Plasmas 2, 1853 (1995). 

Phys. Plasmas, Vol. 2, No. 6, June 1995 T. H. Rider and P. J. Catto 1885 

Downloaded 29 Sep 2004 to 129.55.200.20. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


