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Any suggestions for improvements would be greatly appreciated.

Three quarks for Muster Mark!

–James Joyce, Finnegans Wake (1939)

I think I can safely say that nobody understands quantum mechanics.

–Richard Feynman, The Character of Physical Law (1965)

Overview

Relativistic quantum field theory (or field theory, for short) combines special relativity, which
describes very fast things, and quantum mechanics, which describes very small things. The resulting
theory correctly predicts the behavior of fundamental particles, which are small and often move at
high speeds (or are in bound states with relativistic energies). A “toy theory” of spinless particles
will be used to first introduce some of the basic techniques and results of field theory, since the
spin of real particles makes calculations more complicated. Field theory will then be applied in
succession to each of the four fundamental forces. Quantum electrodynamics is a field theory
describing the electromagnetic force; it is relevant to phenomena such as Compton scattering and
electron-positron annihilation. The field theory of the weak nuclear force describes phenomena such
as the decay of neutrons (beta decay) and muons. Quantum chromodynamics describes the strong
nuclear force and thus is relevant to the behavior of the quarks that compose particles like protons,
neutrons, and pions. Finally, it will be shown that general relativity is equivalent to applying field
theory to gravitation, although there remain obstacles to developing a complete quantum theory
of gravity.
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1 Basic Principles: A Toy Theory
This section will introduce the basic principles of relativistic quantum field theory, including field
equations, antiparticles, Feynman diagrams, and particle decays and reactions. To avoid complex-
ities caused by the spins of real particles, a “toy theory” of spinless particles will be used here.

Before beginning, we should note that this entire summary uses cgs units; for methods of converting
to mks units, see Applied Mathematics ?.?.

Familiarity with the index notation of special relativity as explained in Relativity ?.? will also be
assumed. Briefly:

• Greek indices denote all four dimensions (space and time), whereas Latin indices denote
spatial dimensions only. Repetition of the same index label on the same side of an equa-
tion denotes summation over all values of that index (the Einstein convention for implicit
summation).

• The position vector of something in four-dimensional space-time is xµ = (ct, x, y, z), where
ct ≡ x0.

• The reference metric of unwarped (Minkowski) space-time is:

ηµν = ηµν ≡


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1)

• One raises and lowers indices by multiplying by ηµν and ηµν . Examples: Xµ = ηµνX
ν ;

Xµ = ηµνXν .

1.1 Spin-0 Particle Field: Klein-Gordon Equation

1.1.1 Combining Quantum Physics and Special Relativity

In nonrelativistic quantum physics, particles act like waves and are represented by a wavefunction
ψ ∼ ei(k·x−ωt) = ei(p·x−Et)/h̄. The wavefunction in relativistic quantum physics is essentially the
same, except now it is called a field just to sound impressive.

Note that in the field or wavefunction, the energy E and time t variables are related to each other by
getting multiplied together and divided by Planck’s constant h̄ in the exponential. The momentum
p and position x variables are related to each other the same way. That’s why you can take the
Fourier transform of ψ as a function of t and get ψ as a function of E, or the Fourier transform of
ψ as a function of x and get ψ as a function of p. It’s also why there is a Heisenberg uncertainty
relationship between x and p, and another uncertainty relationship between E and t. The product
of the two variables is comparable to h̄ in the exponential. If one variable becomes smaller (more
accurately measured), the other variable must become larger (more uncertain) to keep the product
constant. See Nonrelativistic Quantum Physics for more information.

In nonrelativistic quantum theory, ψ obeyed a wave equation called the Schrödinger equation which
was derived from the relation between momentum and energy in nonrelativistic classical mechanics.
Similarly, in relativistic quantum theory, ψ obeys a wave equation called the Klein-Gordon equation
which is derived from the momentum-energy relation in special relativity:
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Relativistic Nonrelativistic

|p|2 +m2c2 =
E2

c2

|p|2

2m
= E

|p|2 ψ +m2c2ψ =
E2

c2
ψ

|p|2

2m
ψ = Eψ

|p|2 ψ → −h̄2∇2ψ & E2ψ → −h̄2 ∂
2

∂t2
ψ |p|2 ψ → −h̄2∇2ψ & EΨ→ ih̄

∂

∂t
ψ[

h̄2
(

1

c2

∂

∂t2
−∇2

)
+m2c2

]
ψ = 0

(
− h̄

2∇2

2m
− ih̄ ∂

∂t

)
ψ = 0

Klein-Gordon Eq. Schrödinger Eq.

Note that potential energy was neglected in the above derivations for simplicity. Using the D’Alem-

bertian operator 22 ≡
(

1
c2

∂2

∂t2
−∇2

)
, the 4-dimensional space-time equivalent of the 3-dimensional

Laplacian operator ∇2, the Klein-Gordon equation is usually written as:(
22 +

m2c2

h̄2

)
ψ = 0 Klein−Gordon Eq. (2)

Combining relativity and quantum physics causes two interesting effects:

1. Antiparticles. The ∂2/∂t2 in the Klein-Gordon Eq. (from the E2 in the relativistic momentum-
energy relation) means that a second solution ψ ∼ ei(p·x+Et)/h̄ is also acceptable. You can make this
weird second solution look like the more conventional first one (ψ ∼ ei(p·x−Et)/h̄) if you pretend that
either the energy is negative or time is negative (runs backwards), since E and t are multiplied.
Unlimited negative energies are a physics nightmare, since you could extract energy from the
universe indefinitely by simply creating more and more antimatter. The universe doesn’t work
that way, so one concludes that antiparticles have positive energy (+E) but act as if they are
traveling backward in time (−t). An electron moving forward in time has a negative charge and
thus travels toward a positive charge, but an electron moving backward in time would travel away
from a positive charge–hence it looks to us who are moving forward in time as if it has a positive
charge that is being repelled by the other positive charge. Ditto for magnetic fields and properties.
Therefore, antiparticles have opposite magnetic and electric properties than their corresponding
particles, but they still have positive energy. And since energy and mass are equivalent, their mass
is positive too. Put differently, if antimatter had negative energy/mass, combining it with matter
would yield zero net energy output. But we know that antimatter + matter makes a nice big boom,
so their intrinsic masses/energies must be positive.

2. Creation and annihilation of particles and antiparticles. As shown in Fig. 1, a particle
can make a U-turn in time to become an antiparticle (or vice versa), and to an observer steadily
moving forward in time, the U-turns look like particle-antiparticle annihilation or creation events.

Another way to see that particles and antiparticles can be created and annihilated is to obtain the
probability density for particles from the Klein-Gordon Eq., using the same approach that yielded
the probability density ρ = ψ∗ψ from the Schrödinger Eq. in nonrelativistic quantum theory. The
first step is to multiply Eq. (2) by ψ∗ and take the complex conjugate of the resulting equation:

ψ∗(h̄2∂µ∂
µ +m2c2)ψ = 0 (3)

ψ(h̄2∂µ∂
µ +m2c2)ψ∗ = 0 , (4)
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Figure 1. Creation and annihilation of particles and antiparticles. A particle traveling
forward in time can make a “U-turn” in time to become an antiparticle traveling backward in time,
and vice versa. To an observer steadily moving forward in time, these U-turns look like the creation
or annihilation of particle-antiparticle pairs.

where ∂µ∂
µ ≡ 22. Then subtract Eq. (4) from Eq. (3):

ψ∗h̄∂µh̄∂
µψ − ψh̄∂µh̄∂µψ∗ = 0 , or

∂µ(ψ∗h̄∂µψ − ψh̄∂µψ∗) = 0 , (5)

since ∂µψ
∗∂µψ − ∂µψ∂µψ∗ = 0. Equation (5) is in the form of a conservation equation, ∂µj

µ = 0,
where the conserved current jµ = ψ∗h̄∂µψ − ψh̄∂µψ∗. Thus the probability density is

ρ = j0 =
ih̄

c

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
, (6)

where the i has been included to make the expression real. Equation (6) gives ρ = 2E/c for
ψ = ei(p·x−Et)/h̄, so a field normalized to one particle per unit volume is

ψ =

√
c

2E
ei(p·x−Et)/h̄ . (7)

Antiparticles have ψ ∼ ei(p·x+Et)/h̄, so Eq. (6) assigns them negative probability densities. In
other words, the conserved quantity in Eq. (6) is the net probability density of particles minus
antiparticles. A particle and an antiparticle can be freely created together or annihilated together
without affecting this conservation law. As a result, quantum fields do not represent a defined
number of particles, just as the electromagnetic field does not represent a fixed number of photons.
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1.1.2 Virtual Particles and Fundamental Forces

The Klein-Gordon equation in Eq. (2) is for free particles, since the derivation neglected potential
energy from interactions with other particles or fields. Interactions would add a “source” term on
the right side of Eq. (2). A simple example is a point source of strength g located at r = 0:(

1

c2

∂

∂t2
−∇2 +

m2c2

h̄2

)
ψ = gδ(r) (8)

For static fields (∂2/∂t2 = 0), this equation may be rewritten and solved:

∇2ψ =
m2c2

h̄2 ψ − gδ(r) , or

ψ(r) =
g

4πr
exp

(
− mc

h̄
r

)
. Yukawa potential (9)

The physical interpretation of this result is that the source δ(r) is surrounded by particles of the
field ψ. The ψ particles have zero energy (∂2ψ/∂t2 = 0), whereas they would need an added

energy ∆E =
√

(mc2)2 + |p|2 c2 to really exist. Thus they are not real particles which can exist
indefinitely, but rather virtual particles which appear and disappear within a time ∆t governed
by the uncertainty relation (∆t)(∆E) ∼ h̄. If there were another source nearby, these virtual ψ
particles would interact with that source to cause an attractive or repulsive force between the two
sources. For example, the electromagnetic force is caused by virtual photons being exchanged by
two objects, gravity is caused by virtual gravitons being exchanged, the strong nuclear force is
caused by virtual gluons or pions, and the weak nuclear force is caused by virtual W or Z particles.

Therefore, the field in Eq. (9) may be interpreted as an attractive or repulsive potential surrounding
the source δ(r). It falls off exponentially with distance in a manner depending on the mass of the
virtual particles, since more massive virtual particles are further from having enough energy to
really exist and hence cannot travel very far before they vanish. Yukawa first used this type of
potential to describe the strong nuclear force caused by massive pions. For massless particles such
as photons, Eq. (9) reduces to the form of the Coulomb potential from electrostatics.

In general, virtual particles can have any four-momentum pµ, whereas real particles must have a
four-momentum that satisfies the relativistic momentum-energy relation

p2 ≡ pµpµ =
E2

c2
− |p|2

= m2c2 . (10)

Because Eq. (10) describes a spherical shell of radius mc in Minkowski four-momentum space, real
particles are often said to be “on their mass shell” and virtual particles are “off-shell.”

For reasons known only to nature (or is there an explanation?), the fundamental particles
such as electrons and quarks that make up matter all have half-integer spin and thus are fermions.
That choice of nature means that the particles such as photons and gravitons which mediate forces
between particles of matter must have integer spin and be bosons. If a fermion particle of matter
emitted or absorbed a force-mediating virtual particle that was a fermion, the matter particle would
lose or gain a half-integer of spin and hence change from a fermion to a boson. Only by emitting
and absorbing bosons can the fermions remain fermions.
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1.1.3 Field Formalities

Uncharged particles may be represented by a real field φ ∼ Re{ei(p·x−Et)/h̄} = Re{eip·x/h̄e−iEt/h̄}.
Barring interactions, such a particle has a conserved momentum p (connected with invariance of
the field under spatial translations ∆x, as shown in the classical mechanics summary) and energy
E (connected with invariance under time translations ∆t). Note how each conserved quantity (p
or E) is mathematically related to its corresponding variable of translation (x or t) in the field by a
factor like exp[i(conserved quantity)(variable representing a dimension)], bringing us up to a total
of four dimensions (three for space and one for time).

Charged particles have an additional conserved quantity: their charge q. This can be represented
by modifying the field to be ψ ∼ eiqθRe{ei(p·x−Et)/h̄}, where θ is a phase variable just as x and t
are variables. Essentially we are invoking a new fifth dimension θ to pair with the conserved charge
q. While this notion may sound strange, it can be traced back to the earliest Kaluza-Klein and
Einstein unified field theories. If there is a fifth dimension θ, why can’t we move in it, just as we
can move in space and time? Although momentum and energy are each conserved overall, a specific
particle can change its own momentum and energy by swapping some with other particles as the
particles move in space and time. In contrast, electrons cannot change their charge, and neither
can quarks. Perhaps the reality of a fifth θ dimension makes charge exist, but the fact that we can’t
freely move in the theta dimension keeps anybody from changing their charge. Or as Einstein and
others speculated, maybe the fifth dimension just goes in a circle (you keep coming back to where
you started) and the circle is so small (order of h̄) that we can’t even detect that we travel around
it. Speculations aside, the bottom line is that charged particles are represented by a complex field.
Usually for a charged field, one simply defines ψ ∼ ei(p·x−Et)/h̄ to be complex instead of explicitly
including q in it. This sweeps any extra dimension θ under the rug.

A more formal view of the need for complex fields uses Eq. (6), the conserved net density of
particles minus antiparticles. This density is automatically zero for real (uncharged) fields, so
uncharged particles are their own antiparticles (just as the negative of the number 0 is also 0),
and the number of particles in a real field need not be conserved. If particles are charged, there
must exist antiparticles with the opposite charge, and one should be able to have more particles
than antiparticles, or vice versa, if one wished. The conserved density of Eq. (6) can be nonzero
for complex (charged) fields, and when multiplied by the particle charge it may be viewed as the
charge density since it counts particles minus antiparticles.

While particles without spin can be represented by scalar fields like those above, particles with
spin must be represented by vector fields (for spin-1

2 particles like electrons and spin-1 particles like
photons) or tensor fields (for spin-2 particles like gravitons) to indicate the spin direction. This
will be explained more in Sections 2-5.

Using techniques from the nonrelativistic quantum summary, φ and ψ may be second-quantized:

φ(x) =

∫
d3p

(2π)3/2

√
c

2Ep

(
âpe
−ip·x + â†pe

+ip·x
)

(11)

ψ(x) =

∫
d3p

(2π)3/2

√
c

2Ep

(
b̂pe
−ip·x + ĉ†pe

+ip·x
)

ψ∗(x) =

∫
d3p

(2π)3/2

√
c

2Ep

(
ĉpe
−ip·x + b̂†pe

+ip·x
)

The real field φ has the operator â†p that creates φ particles with momentum p and energy Ep and

the operator âp that annihilates them. For the complex field ψ, b̂†p and b̂p create and annihilate

charged particles, and ĉ†p and ĉp create and annihilate antiparticles with the opposite charge.
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It is customary to construct a Lagrangian that when inserted into the Euler-Lagrange equations
(see Classical Mechanics ?.?) gives the appropriate quantum field equation. The Lagrangian L is
just a system’s kinetic energy minus its potential energy. For example, the Klein-Gordon Eq. (2)
for a complex field may be obtained from the Lagrangian density L (Lagrangian per volume):

L =
1

2
(∂µψ)∗(∂µψ)︸ ︷︷ ︸

Kinetic energy

− 1

2

(
mc

h̄

)2

ψ∗ψ︸ ︷︷ ︸
Potential energy stored as particle mass

. (12)

Integrating the Lagrangian density over space gives the Lagrangian, L =
∫
d3xL. Why does

relativistic quantum physics focus more on the Lagrangian L = (kinetic energy) - (potential energy),
whereas nonrelativistic quantum physics focuses more on the Hamiltonian or total energy, L =
(kinetic energy) + (potential energy)? Mostly that is just a difference in custom–you could take
other paths to arrive at the same final answer. What physical justification there is would go like
this: When L is integrated over all space and time (that is called the action) and one tries to
make the result as small as possible (principle of least action), the laws of motion governing that
system pop out–Newton’s laws for particles, Maxwell’s equations for photons, etc. In other words,
averaged over space and time, the universe tries to make the kinetic energy of a system as small
as possible and the potential energy as large as possible, as if things are naturally seeking a steady
place to rest. (Waving hands wildly...)

As a detailed example, the rest of Section 1 will consider a “toy theory” in which charged “nucleons”
denoted by the complex field ψ interact with uncharged “pions” denoted by the real field φ. The
complete Lagrangian density for this theory is

L =
1

2
(∂µψ)∗(∂µψ)− 1

2

(
mnc

h̄

)2

ψ∗ψ︸ ︷︷ ︸
Lagrangian of free charged
“nucleons” with mass mn

+
1

2
(∂µφ)(∂µφ)− 1

2

(
mπc

h̄

)2

φ2︸ ︷︷ ︸
Lagrangian of free uncharged

“pions” with mass mπ

− gφψ∗ψ︸ ︷︷ ︸
Nucleon-pion

interaction energy

(13)

The interaction term of the Lagrangian density, LInt = −gφψ∗ψ, is minus the potential energy
due to nucleon-pion interactions. Taking the complex conjugate of one of the ψ fields ensures the
interaction energy will be real. The coupling constant g governs how strongly the fields interact.

1.2 Feynman Diagrams

The processes of particles reacting with each other or decaying into other particles may be repre-
sented by schematic illustrations known as Feynman diagrams. Mathematical rules will now be
derived in order to calculate reaction cross sections and decay rates from Feynman diagrams.

1.2.1 Scattering Matrix

To derive Feynman diagrams and rules, one can begin by considering particle interactions in general.
The interaction Lagrangian density is LInt = −EInt/volume, where EInt is the interaction energy
among the particles. For example, the interaction Lagrangian for the toy theory is

LInt = −gφψ∗ψ . (14)

The physical meaning of this interaction Lagrangian is that each field in Eq. (14) represents a
particle meeting in the same interaction “vertex.” ψ could be a nucleon coming into the vertex or
an antinucleon leaving it. Similarly, ψ∗ could be either a nucleon leaving or an antinucleon coming
into the interaction vertex.
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Either one φ pion comes into the interaction vertex or one pion leaves it (but not both). Why
don’t we say that φ could represent a particle going one way or antiparticle going the other way,
just like ψ∗ and ψ∗? As mentioned in Section 1.1.3, uncharged particles (real fields) are their own
antiparticles. For example, you never hear about anti-photons or anti-gravitons, because there
aren’t any. To use a math analogy, numbers like 1, 2, 3 have “anti” version -1, -2, -3. 0 doesn’t
have an anti version, or more to the point the anti-version of 0 is just 0. The equivalent of photons,
gravitons, etc. in this toy theory is the pion. Thus the φ in Eq. (14) could represent either a pion
coming to that interaction vertex or a pion leaving it.

This same basic technique works for any kind/number of particle interactions, so it is very handy.
You multiply by the wave function for each particle, because when you square the resulting am-
plitude to find the probability of a particular reaction occurring, each wave function in effect gets
squared. Thus the probability of the whole event occurring is proportional to the probabilities that
all the necessary initial, intermediate, and final particles are really there (their wave functions/fields
squared). In real physics theories (Sections 2-5), each vertex also picks up a tensor or matrix to
show how the three-dimensional spatial components of each field interact with those of the other
fields, making the calculations much scarier, but the basic principle is the same.

Suppose that the initial state of a system of particles is |Ψ
initial
〉 (say at t = −∞, just to be as

initial as possible) and the final state is 〈Ψ
final
| (at t = +∞). The time evolution from the initial to

the final states due solely to interactions among the particles (interaction picture) is given by the
scattering matrix S (using x0 ≡ ct in the integral):

S ≡ 〈Ψ
final
|S |Ψ

initial
〉 ∼ exp

(
− iEIntt

h̄

)
= exp

(
i

h̄c

∫
d4x LInt

)
(15)

The scattering matrix S tells how the fields change over time just because of their interactions,
which are described by the potential energy term Eint = −Lint from Eq. (14). In nonrelativistic
quantum physics and now in relativistic quantum physics, time variation due to energy always goes
like e−iEt/h̄, so we plug in Eint here. To go from the first to the second line of Eq. (15), note that
the sign flips in going from Eint to Lint, we integrate over all three spatial dimensions d3x since
here Lint is a density per volume, and t =⇒

∫
dt =⇒

∫
dx0/c (calling the time dimension x0 and

measuring it in meters to make it look mathematically more like the spatial dimensions). Thus d4x
means we are now integrating over the three spatial dimensions plus the time dimension.

Using the expansion ex = 1 +
∑∞
n=1(xn/n!), the scattering matrix may be rewritten as:

S = 1 +
∞∑
n=1

1

n!

(
i

h̄c

∫
d4x LInt

)n
(16)

To be truly inclusive, the sum must be done not only over all n, but also over all contractions of
the fields (identification of two fields in a product as representing the same particle at different
times) and all permutations of which interaction vertex is which. Since there are n! permutations
of n vertices, the sum over permuations cancels the 1/n!, leaving only:

S = 1 +
∞∑
n=1

∑
contractions

(
i

h̄c

∫
d4x LInt

)n
(17)
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Using LInt for the toy theory and using overhead lines to connect contracted fields (two different
fields that represent the same particle moving between two different vertices, as will be explained
in more detail in Section 1.2.2), one obtains

S = 1 +
∞∑
n=1

∑
contractions

(
− ig
h̄c

∫
d4x φψ∗ψ

)n
= 1 (a)

− ig
h̄c

∫
d4x φψ∗ψ (b)

+

(
− ig
h̄c

)2∫
d4x1

|
φ (x1)ψ∗(x1)ψ(x1)

∫
d4x2

|
φ(x2)ψ∗(x2)ψ(x2) (c)

+

(
− ig
h̄c

)2∫
d4x1 φ(x1)

|
ψ∗ (x1)ψ(x1)

∫
d4x2 φ(x2)ψ∗(x2)

|
ψ(x2) (d)

+

(
− ig
h̄c

)2∫
d4x1 φ(x1)ψ∗(x1)

|
ψ (x1)

∫
d4x2 φ(x2)

|
ψ∗(x2)ψ(x2) (e)

+... (18)

The physical meaning of each term in Eq. (18) is shown in Fig. 2.

Pion 

Nucleon 

Antinucleon 

(a) (b) (c) 

(d) (e) 

Figure 2. Physical meaning of the terms in Eq. (18). These Feynman diagrams show that
each term represents possible interactions among pions (wavy lines), nucleons (lines with arrows
pointed one way), and antinucleons (lines with arrows pointed the other way). The first term,
1, represents the possibility that the particles do not interact. The second term represents one
interaction vertex among the particles. Higher terms are interactions with two or more vertices.
Time flows in one direction in each diagram, but that direction depends on the process being
described. For example, the one-vertex term represents a pion turning into a nucleon and an
antinucleon if time flows to the right, a nucleon-antinucleon pair turning into a pion if time flows to
the left, a nucleon absorbing or emitting a pion if time flows upward, or an antinucleon absorbing
or emitting a pion if time flows downward.
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Thus the scattering matrix S is a complex exponential of time [Eq. (15)], but that exponential
can be rewritten as a Taylor series [Eq. (17)]. Physically, the terms of the Taylor series represent
all possible interactions, including different numbers of vertices (starting with the fewest) and all
possible contractions of fields. Figure 2 illustrates the first few terms; after those would come
all possible interactions with 3 vertices, then 4, then 5, etc. Terms with fewer vertices are more
important than those with more, since each vertex brings a multiplicative factor g � 1 (except in
quantum gravity–see Section 5). Basically, the series solution for S contains everything that could
possibly happen, given any number and type of initial and final particles. In practice, you know
what initial and final particles you have (e.g., you want to calculate the repulsion between two
nucleons, so you know there are two initial incoming nucleons, two final outgoing nucleons, and
only virtual mesons), so you can ignore all but one or a few terms in the series. What you end up
with is just a number, a complex amplitude. Multiply that by its complex conjugate and you get
the probability that interaction will actually occur (within a multiplicative factor–see Section 1.3).

1.2.2 Evaluation of One- and Two-Vertex Terms

For now, consider only the one-vertex term in Eq. (18), which can represent a pion turning into
a nucleon and an antinucleon. Using the momenta shown in Fig. 3, each particle’s field may be
written as

φ(x) = e−ip1·x/h̄ ψ∗(x) = eip2·x/h̄ ψ(x) = eip3·x/h̄ (19)

Note that the four-momentum of the outgoing particles is explicitly written as the opposite sign.

p1 

p2 

p3 

Time 

(From now on, time will be assumed 
to flow to the right in Feynman 

diagrams unless otherwise stated.) 

Figure 3. Pion decay. In this toy theory, a pion with four-momentum p1 can decay into a
nucleon with momentum p2 and an antinucleon with momentum p3 if mπ > 2mn.

Using these expressions for the fields, this 1-vertex term in S may be evaluated:

S1−vertex = − ig
h̄c

∫
d4x φ(x)ψ∗(x)ψ(x) = − ig

h̄c

∫
d4x e−i(p1−p2−p3)·x/h̄

= − igh̄
3

c
(2π)4 δ4(p1 − p2 − p3) , (20)

where the properties of the delta function were used:∫
d4x e−ip·x/h̄ = (2π)4δ4(p/h̄) = h̄4(2π)4δ4(p) . (21)
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A brief explanation of Eq. (21) is in order. If the imaginary exponent of e is nonzero, the ei whatever

oscillates in space and time, just as a good old-fashioned wave function is supposed to do. Inte-
grating the oscillations over space and time gives an end result of zero–half the time the oscillation
is up, half the time it’s down, but when averaged over everything it is zero. The only way to get
a nonzero final answer is if the exponent of e is zero (e0 = 1). That is the definition of a delta
function–it is zero everywhere except at one precise value of its argument. If the oscillations are
integrated over all x, one obtains a delta function of p. If the oscillations are integrated over all p
instead, one gets a delta function of x, as will be used in Eqs. (24-25).

Next consider the two-vertex term shown in Fig. 4, which represents nucleon-nucleon scattering:

Snn =

(
− ig
h̄c

)2 ∫
d4x1

|
φ (x1)ψ∗(x1)ψ(x1)

∫
d4x2

|
φ(x2)ψ∗(x2)ψ(x2)

=

(
− ig
h̄c

)2 ∫
d4x1

∫
d4x2

|
φ (x1)

|
φ(x2)ψ∗(x1)ψ(x1)ψ∗(x2)ψ(x2) (22)

(a) (b) (c) 

p0 

p1 p2’ 

p2 p1’ 

p0 

p1 p1’ 

p2 p2’ 

p1 

p2’ 

p2 

p1’ 

θ  
θ  

Figure 4. Nucleon-nucleon scattering. Feynman diagrams (a) and (b) both contribute to the
scattering. The only difference between them is that the nucleons can “swap identities.” (c) The
relative angles of the nucleons’ incoming and outgoing three-momenta are shown.

The contraction between the fields φ(x1) and φ(x2) means those fields represent the same particle,
or in other words a φ particle created at point x1 in space-time in the first interaction vertex
travels to and is absorbed at the second interaction x2 (or vice versa). If φ(x1) and φ(x2) are not
contracted, they refer to different φ particles and each is under a separate, independent integral.
But if they are contracted, φ(x2) depends on how far away the field was emitted at x1. Thus the
two integrals are interrelated and the two integral signs are pulled to the front to apply to the
whole expression in the second line of Eq. (22). φ represents an uncharged mediator particle (like
a photon), so it is a real field (Section 1.1.3) and is the same as its complex conjugate. You do
get into complex numbers when contracting charged particle fields; in fact Section 2 shows how
messy that gets for realistic electrons, as opposed to the pretend particles of Section 1. In the end,
though, all of this is just to calculate an amplitude, and then that amplitude is multiplied by its
complex conjugate to get a real probability that the reaction will occur.

In general, for the creation of a φ field at x1, the field at other points is φ(x) ≡ G(x− x1), where
G(x− x1) is the field solution of the Klein-Gordon equation with a unit point source at x1:

[h̄222 +m2c2] G(x− x1) = δ4(x− x1) . (23)
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Math nerds may recognize G to be a Green’s function; other folks shouldn’t worry about that.
Anyway, G may be found by Fourier-transforming Eq. (23) to momentum-space:

[−p2 +m2c2] G̃ = e−ip·x1/h̄ =⇒ G̃ = − e−ip·x1/h̄

p2 −m2c2
, (24)

where G̃ is the Fourier transform of G. Transforming back to regular space yields

G(x− x1) =

∫
d4p

(2π)4
eip·x/h̄ G̃ =

∫
d4p

(2π)4

i

p2 −m2c2
e−ip·(x1−x)/h̄ . (25)

Thus the field at x2 caused by the creation of φ at x1 (with the physical meaning of each factor) is

|
φ (x1)

|
φ(x2) = G(x2 − x1) =

∫
d4p0

(2π)4︸ ︷︷ ︸
Integrate over

all possible
momenta

(particle is virtual)

i

p2
0 −m2

πc
2︸ ︷︷ ︸

Smaller if far
off mass shell

(less likely
to exist)

e−ip0·(x1−x2)/h̄︸ ︷︷ ︸
Phase factor
from wave

eip0·x/h̄ going
from x1 to x2

. (26)

Since the contraction will be used to calculate an amplitude, constant phase factors do not matter,
so the expression has been multiplied by (−i) to agree with convention.

The weighting factor i/(p2 −m2c2) in Eq. (26) is called the propagator, since it determines how
likely a virtual particle is to propagate from one interaction vertex to the other. The propagator
has turned out to be directly related to the momentum-space wave equation for the free field:

[f(p)]φ = 0 momentum-space wave eq. for free field

=⇒ propagator = −i × inverse of [f(p)] (27)

For this toy theory [f(p)] = [−p2 +m2c2], but the general relation in Eq. (27) will prove useful in
later sections for developing propagators for virtual particles in real field theories.

The other fields are

ψ(x1) = e−ip1·x1/h̄ ψ∗(x1) = eip
′
1·x1/h̄

ψ(x2) = e−ip2·x2/h̄ ψ∗(x2) = eip
′
2·x2/h̄

Substituting these expressions for the fields into Eq. (22), one finds

Snn =

(
− ig
h̄c

)2 ∫
d4x1

∫
d4x2

∫
d4p0

(2π)4

i

p2
0 −m2

πc
2
e−i[p0·(x1−x2)−p′1·x1+p1·x1−p′2·x2+p2·x2]/h̄

=

(
− ig
h̄c

)2 ∫
d4x1

∫
d4x2

∫
d4p0

(2π)4

i

p2
0 −m2

πc
2
e−i(p1+p0−p′1)·x1/h̄e−i(p2−p0−p′2)·x2/h̄

=

(
− ig
h̄c

)2 ∫ d4p0

(2π)4

i

p2
0 −m2

πc
2
h̄4(2π)4δ4(p1 + p0 − p′1)h̄4(2π)4δ4(p2 − p0 − p′2) . (28)

External observers only see the overall result of this interaction instead of the individual vertices.
Thus the result of Eq. (28) may be put into a form resembling the single interaction of Eq. (20):

Snn = − iAh̄
3

c
(2π)4 δ4(p1 + p2 − p′1 − p′2) . (29)

Here g has been replaced by an interaction amplitude A, which can be computed from Eq. (28).
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1.2.3 Feynman Rules

Generalizing from the calculations in the preceding two sections, one can find the amplitude of any
process in this toy theory by following these Feynman rules:

1. Label the four-momentum pi of each line, using an arrow to denote the positive direction.

2. For each virtual particle (internal line), integrate over all possible four-momenta with a weighting
factor (propagator) that makes momenta further from the particle’s mass shell less likely to occur:∫

d4pi
(2π)4

i

p2
i −m2

i c
2
,

where pi and mi are the four-momentum and mass of that virtual particle.

3. For each interaction vertex, include a factor

(−ig)(2π)4δ4(
∑

pin −
∑

pout) ,

in which pin and pout are the momenta entering and leaving the vertex, respectively. The g accounts
for the interaction strength and the δ4 function ensures that energy and momentum are conserved.

4. The result is

−iA(2π)4δ4(
∑

pin −
∑

pout) ,

where pin and pout are the initial and final momenta.

The probability of the process happening will be proportional to |A|2, just as wavefunctions are
squared to get probabilities in nonrelativistic quantum physics.
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1.3 Examples

1.3.1 General Formula for Decay Rates

Consider the decay of particle 1 into multiple particles, 1→ 2 + 3 + ... The decay rate (probability
of decay per time) is Γ ∝ |A|2:

Γ = S
c

h̄

[∫
d3p2

(2π)3

∫
d3p3

(2π)3
...

]
︸ ︷︷ ︸
Integrate over phase

space of final momenta

(2π)4δ4(p1 − p2 − p3 − ...)︸ ︷︷ ︸
Conserve energy

& momentum

(
c

2E1

c

2E2

c

2E3
...

)
︸ ︷︷ ︸

Normalize
fields

|A|2 , (30)

in which the degeneracy factor S is a product of 1/N ! for each N identical final particles.

The decay rate may be simplified for two-body decay in which a stationary particle of mass m1

decays into two particles of masses m2 and m3 with m1 > m2 + m3. Since the initial particle is
motionless, p1 = 0 and E1 = m1c

2. It is also helpful to rewrite the delta function in the form
δ4(p1 − p2 − p3) = cδ(E1 − E2 − E3)δ3(p1 − p2 − p3):

Γ =
Sc3

32π2h̄m1

∫
d3p2d

3p3

E2E3
δ(m1c

2 − E2 − E3)δ3(−p2 − p3) |A|2

=
Sc3

32π2h̄m1

∫
d3p2

E2E3
δ(m1c

2 − E2 − E3) |A|2 , (31)

where integrating d3p3 over the δ3 function gave p3 = −p2.

Since the remaining delta function is in terms of energy, d3p2 will be rewritten in terms of energy.
First change to spherically symmetric coordinates in momentum space,

d3p2 = dΩ |p2|2 dp2 = 4π |p2|2 dp2 . (32)

Since E2 + E3 =
√
m2

2c
4 + |p2|2 c2 +

√
m2

3c
4 + |p2|2 c2, one finds by differentiation:

d(E2 + E3) =
c2 |p2| dp2√
m2

2c
4 + |p2|2 c2

+
c2 |p2| dp2√
m2

3c
4 + |p2|2 c2

= |p2| dp2

(
1

E2
+

1

E3

)
, or

|p2| dp2 =
E2E3d(E2 + E3)

(E2 + E3)c2
. (33)

Using Eqs. (32) and (33), Eq. (31) may be rewritten as

Γ =
Sc

8πh̄m1

∫
d(E2 + E3) |p2|

E2 + E3
δ(m1c

2 − E2 − E3) |A|2

=
S |p2|

8πh̄m2c
|A|2 . (34)

The magnitude |p2| of either outgoing momentum may be found from the conservation of energy,

m1c
2 =

√
m2

2c
4 + |p2|2 c2 +

√
m2

3c
4 + |p2|2 c2 . (35)

If |A|2 is spin-dependent, it must be averaged over the possible initial particle spins and summed
over the possible final particle spins. If there are multiple decay pathways, the total decay rate is
the sum of the decay rates for each pathway, ΓTotal =

∑
Γ. The time constant for particle decay is

τ = 1/Γ, and the particle half-life is τ1/2 = τ ln 2 = ln 2/Γ.
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1.3.2 Pion Decay in the Toy Theory

If mπ > 2mn in the toy theory, the pion will be unstable and will decay into a nucleon-antinucleon
pair. To lowest order, this process is described by a Feynman diagram of only one vertex and no
internal lines, as shown in Fig. 3. Following the Feynman rules from the previous section, one finds

−iA(2π)4δ4(p1 − p2 − p3) = −ig(2π)4δ4(p1 − p2 − p3) =⇒ A = g . (36)

Solving Eq. (35) for the outgoing momentum using m1 = mπ and m2 = m3 = mn, one finds

|p2| = |p3| =
c

2

√
m2
π − 4m2

n . (37)

Note that this momentum is real only for mπ > 2mn–otherwise the pion cannot decay. Plugging
this momentum and the amplitude from Eq. (36) into Eq. (34), the decay rate is:

Γ =
g2 |p2|

8πh̄m2
πc

=
g2
√
m2
π − 4m2

n

16πh̄m2
π

. (38)

1.3.3 General Formula for Interaction Cross Sections

Now consider interactions between particles 1 and 2 in the center-of-mass frame: 1 + 2→ 3 + 4 + ...
The interaction rate is Γ ∝ σ∆v, where σ is the interaction cross section and ∆v is the collision
velocity between particles 1 and 2. Thus the cross section σ ∝ Γ/∆v may be obtained by modifying
Eq. (30) (where S is still a product of 1/N ! for each N identical final particles):

σ =
S ch̄2

∆v

[∫
d3p3

(2π)3

∫
d3p4

(2π)3
...

]
︸ ︷︷ ︸
Integrate over phase

space of final momenta

(2π)4δ4(p1 + p2 − p3 − p4...)︸ ︷︷ ︸
Conserve energy

& momentum

(
c

2E1

c

2E2

c

2E3

c

2E4
...

)
︸ ︷︷ ︸

Normalize
fields

|A|2 . (39)

The collision velocity may be rewritten using the velocities v1 and v2 of each particle:

∆v = v1 + v2 = c2
(
γm1v1

γm1c2
+
γm2v2

γm2c2

)
= c2 |p1|

(
1

E1
+

1

E2

)
= c2 |p1|

(E1 + E2)

E1E2
. (40)

Using Eq. (40) and rewriting δ4(p1 + p2 − p3 − p4) = cδ(E1 + E2 − E3 − E4)δ3(−p3 − p4) (since
p1 +p2 = 0 in the center-of-mass) σ for two final particles may be simplified just as Γ was earlier:

σ = S

(
h̄c

8π

)2 c2

|p1| (E1 + E2)

∫
d3p3d

3p4

E3E4
δ(E1 + E2 − E3 − E4)δ3(−p3 − p4) |A|2

= S

(
h̄c

8π

)2 c2

|p1| (E1 + E2)

∫
d3p3

E3E4
δ(E1 + E2 − E3 − E4) |A|2

= S

(
h̄c

8π

)2 c2

|p1| (E1 + E2)

∫
dΩ |p3| d(E3 + E4)

(E3 + E4)
δ(E1 + E2 − E3 − E4) |A|2

= S

(
h̄c

8π

)2 |p3|
|p1|

1

(E1 + E2)2

∫
dΩ |A|2 . (41)

In simplifying the expression for Γ earlier,
∫
dΩ = 4π was used, since probabilities resulting from a

stationary particle’s decay were spherically symmetric (assuming |A|2 was averaged over any initial
particle spin). Here the integral over dΩ is left undone, because in general |A|2 may depend on the
angle between the initial and final particle trajectories. Thus the differential cross section is

dσ

dΩ
=

(
h̄c

8π

)2 S

(E1 + E2)2

|p
final
|

|p
initial
|
|A|2 ,

Differential cross section for two-body
scattering in center-of-mass (CM) frame

(42)

where |p
initial
| and |p

final
| are the momenta of either particle before and after the collision.
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For other conditions, modified versions of Eq. (42) may be derived using these same techniques.
For example, for elastic scattering 1 + 2 → 1′ + 2′ between a massless particle 1 and a massive
particle 2 in the lab frame where particle 2 is initially at rest, one finds

dσ

dΩ
=

(
h̄

8πm2c

)2 (E′1
E1

)2 〈
|A|2

〉
(43)

Likewise, for the process 1 + 2→ 3 + 4 in the lab frame with particle 2 at rest and particles 3 and
4 massless, one should use

dσ

dΩ
=

S

2

(
h̄

8π

)2 c(E1 +m2c
2)

|p1| (E1 +m2c2 − |p1| c cos θ)2

〈
|A|2

〉
(44)

1.3.4 Nucleon-Nucleon Scattering in the Toy Theory

An example of two-body interactions is nucleon-nucleon scattering in the toy theory. Applying the
Feynman rules to the diagram in Fig. 4(a), one reproduces the results of Eqs. (28) and (29):

−iAa(2π)4δ4(p1 + p2 − p′1 − p′2) = −ig2(2π)4
∫
d4p0

1

p2
0 −m2

πc
2
δ4(p1 − p0 − p′1)δ4(p2 + p0 − p′2)

= −ig2(2π)4 1

(p1 − p′1)2 −m2
πc

2
δ4(p1 + p2 − p′1 − p′2) , (45)

where integrating over the first δ4 function yielded the substitution p0 = p1 − p′1. (Using either δ4

would produce an equivalent answer.) Thus the amplitude of the diagram in Fig. 4(a) is:

Aa =
g2

(p1 − p′1)2 −m2
πc

2
. (46)

As shown in Fig. 4(b), there is actually a second diagram that contributes to this process. The
only difference between diagrams (a) and (b) is that the two nucleons can “swap identities” with
each other. For simplicity, this second diagram was swept under the rug in Section 1.2.3, but now
it is crawling back out. Since the amplitude Ab of diagram (b) is simply the amplitude of (a) with
the interchange p′1 ↔ p′2, the total amplitude of this process to order g2 is

A = Aa + Ab =
g2

(p1 − p′1)2 −m2
πc

2
+

g2

(p1 − p′2)2 −m2
πc

2
. (47)

This collision is elastic, so in the center-of-mass frame E1 = E′1 = E2 = E′2 ≡ E and |p1| = |p′1| =
|p2| = |p′2| ≡ |p|. Defining θ to be the angle between p1 and p′1, as shown in Fig. 4(c), one finds

(p1 − p′1)2 =
E2

1 + E′21 − 2E1E
′
1

c2
− |p1|2 −

∣∣p′1∣∣2 + 2p1 · p′1 = −2 |p|2 (1− cos θ) . (48)

Similarly, the other expression involving momenta is

(p1 − p′2)2 = −2 |p|2 (1 + cos θ) . (49)

Using Eqs. (48) and (49), the amplitude from Eq. (47) may be rewritten as

A = − g2

2 |p|2 (1− cos θ) +m2
πc

2
− g2

2 |p|2 (1 + cos θ) +m2
πc

2
. (50)

Equation (42) may be used with E2 = |p|2 c2 +m2
nc

4 and the amplitude from Eq. (50):

dσ

dΩ
=

(
h̄c

8π

)2 1

8E2
|A|2 . (51)
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1.4 Zoological Catalog of Fundamental Particles

Unlike in the toy theory, real particles have spin and are subject to four different fundamental
forces, which will be considered individually in the next four sections. To avoid confusion, here
are tables of the fundamental particles of matter and their interactions. Particles of matter may
be divided into two families, leptons (Table 1) and quarks (Table 2). All are point-like, spin-1

2
particles. They all have corresponding antiparticles, denoted by adding an overbar (or sometimes
for leptons by changing the sign of the charge). The four fundamental forces (Table 3) are caused
by interactions with different force-mediating particles and act on different subsets of particles.

Charge First Generation Second Generation Third Generation

-1 electron (e−) muon (µ−) tau (τ−)
511.0 keV/c2 105.7 MeV/c2 1.784 GeV/c2

0 electron neutrino (νe) muon neutrino (νµ) tau neutrino (ντ )
< 3 eV/c2 < 190 keV/c2 < 18 MeV/c2

Table 1. Leptons and their masses. µ− and τ− are basically short-lived, overweight electrons.
Neutrinos are stable and have small but nonzero masses that have not yet been accurately measured.
They do not interact by the electromagnetic or strong forces (or much via gravity), so they are
difficult to detect and usually just seem like phantoms that carry off energy in weak interactions.

Charge First Generation Second Generation Third Generation

-1/3 down (d) strange (s) bottom (b)
310-363 MeV/c2 483-538 MeV/c2 4700 MeV/c2

+2/3 up (u) charm (c) top (t)
310-363 MeV/c2 1500 MeV/c2 > 23, 000 MeV/c2

Table 2. Quarks and their effective masses. Baryons like neutrons and protons are composed
of three quarks, and mesons like pions and kaons are composed of a quark and an antiquark. The
possible quark flavors (types) are d, u, c, s, b, and t. The effective masses of the quarks in mesons
and baryons is given; where a range of mass values is given, the lower value is in mesons and the
upper one is in baryons. d and u quarks are commonplace, s quarks can be important at times,
and c, b, and t quarks are so massive that they are important only in very high-energy collisions.

Force Particle Spin Charge Mass Interacts with

Electromagnetic photon 1 0 0 all charged particles

Weak nuclear W± 1 ±1 81.8 GeV/c2 all leptons and quarks
Z0 1 0 92.6 GeV/c2 all leptons and quarks

Strong nuclear gluons 1 0 0 other gluons and all quarks

Gravitational graviton 2 0 0 all particles

Table 3. Fundamental forces and the particles that mediate them. The physical roles of
the electromagnetic and gravitational forces should be familiar. The weak nuclear force mediates
some important particle decay processes such as beta decay of neutrons and muons. The strong
nuclear force binds together quarks to form baryons and mesons; in turn, mesons (or really the
underlying quark-gluon strong force interactions) effectively act as force-mediating particles to bind
together baryons to form the nuclei of atoms.
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2 Electromagnetic Force: Quantum Electrodynamics

Quantum electrodynamics (QED) describes electromagnetic interactions between an electrically
charged particle and a photon. It also describes the electromagnetic force between two charged
particles, since this force is mediated by the interchange of virtual photons. QED is similar to the
toy field theory discussed in the previous section, but it is more complicated, as it must include
the effects of particle spin: photons have spin 1, and most charged particles of interest have spin
1
2 . QED may be used to correctly calculate many physical effects, such as Compton scattering of
a photon off an electron, electron-positron annihilation, scattering of an electron off a proton or
another electron, and the interaction of an electron with a magnetic field.

2.1 Quantum Electrodynamics (QED) Theory

The Feynman rules for QED may be derived just as they were for the toy theory of Section 1.
Due to the many similarities between QED and the toy theory, we will focus on the key difference,
particle spin, and the impact this has on the Feynman rules. Spin-1

2 charged particles such as
electrons will be considered first, and then spin-1 photons will be analyzed. Next the interactions
between the two types of particles will be considered and the Feynman rules will be discussed.
Subsequently these rules will be applied to several practical examples of physical effects.

p2 

Photon 
p1 

p3 

Electron 

Positron 

(a) (b) 

Figure 5. Particles and their interactions in QED Feynman diagrams. (a) Wavy lines
represent photons, lines with arrows pointing the same way as their momentum (forward in time)
represent electrons, and lines with arrows pointing opposite their momentum (backward in time)
represent positrons. (b) A QED interaction vertex indicates an incoming or outgoing photon
interacting with an incoming electron (or outgoing positron) and outgoing electron (or incoming
positron).
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2.1.1 Spin-1/2 Particle Field: Dirac Equation

For spin-1
2 particles, the Klein-Gordon equation may be “factored” into two separate, spin-dependent

solutions. As shown in Section 1, the Klein-Gordon equation is basically just a fancy version of the
relativistic energy-momentum relation. Therefore, factoring the Klein-Gordon equation is equiva-
lent to factoring the momentum-energy relationship: p2−m2c2 = (pµ−mc)(pµ+mc) = 0. However,
factoring like this wouldn’t be quite right. Although p2 and m2c2 are scalars, when they are not
squared, pµ is a four-vector and mc is a scalar. Trying to directly add them together in the factored
terms is like adding apples and oranges and is sure to bring out the math cops. This problem can
be fixed by introducing the 4× 4 Dirac matrices γµ that make the factoring work properly:

(p2 −m2c2) = (γµpµ −mc) (γνpν +mc) = 0 . (52)

Now γµpµ and γνpν are scalars (using the Einstein summation convention for repeated indices from
Relativity ?.?), so everything is legal. Multiplying four-vectors by Dirac matrices is so common that
it is usually denoted with a slash mark, 6 a ≡ γµaµ for any four-vector aµ.

The momentum of a field obeys the usual quantum mechanical relationship, pµψ = ih̄ψ, so the two
factored solutions in Eq. (52) are

(ih̄ 6 ∂ −mc)ψ = 0 Dirac equation for spin-1
2 particles (e.g., electrons) (53)

(ih̄ 6 ∂ +mc)ψ = 0 Dirac equation for spin-1
2 antiparticles (e.g., positrons) (54)

To satisfy γµpµγ
νpν = p2 in Eq. (52) work, the Dirac matrices must obey certain properties:

(γ0)2 = 1
(γ1)2 = (γ2)2 = (γ3)2 = −1
γµγν + γνγµ = 0 for µ 6= ν

 =⇒ {γµ, γν} = 2gµν (55)

Appropriate 4× 4 matrices are

γ0 ≡
(

1 0
0 −1

)
and γi ≡

(
0 σi

−σi 0

)
for i = 1, 2, 3, (56)

where the 2× 2 identity (1) and zero (0) matrices are defined as

1 ≡
(

1 0
0 1

)
and 0 =

(
0 0
0 0

)
(57)

and the 2× 2 Pauli spin matrices are the same as in nonrelativistic quantum physics,

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (58)

Like all the four-vectors and 4× 4 matrices, the Dirac solutions ψ also have four components,

ψ =


ψ1

ψ2

ψ3

ψ4

 ψ ≡ ψ†γ0 = (ψ∗1 ψ∗2 − ψ∗3 − ψ∗4) . (59)

If ψ represents an incoming particle, its adjoint ψ represents an outgoing particle of the same
type, and vice versa. ψ† denotes the Hermitian (transpose) conjugate as in nonrelativistic quantum
physics and must be multiplied by γ0 to obtain the appropriate minus signs for ψ. From now on,
a bar over any field solution will denote this same adjoint-taking process.
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The general idea in Eq. (59) is that ψ1 represents an electron with one spin direction (say spin
up), ψ2 is an electron with the other spin direction (say down), ψ3 is a positron with one spin
direction, and ψ4 is a positron with the other spin direction. Thus, one can write out the solutions
for incoming electrons or outgoing positrons with the first or second spin state and normalization
factor C,

ψelectron = C e−ip·x/h̄us

ψpositron = C e+ip·x/h̄vs

u1 ∼


1
0
−
−

 u2 ∼


0
1
−
−

 v1 ∼


−
−
1
0

 v2 ∼


−
−
0
1

 (60)

For mathematical reasons [1], the blanks in the column vectors are not actually zero, but they are
completely determined by the choices of the other values in the column and thus may be ignored.

Outgoing electrons or incoming positrons are represented by taking the adjoints of Eq. (60):

ψelectron = C∗ e+ip·x/h̄us ψpositron = C∗ e−ip·x/h̄vs . (61)

The “electron” and “positron” subscripts will be dropped, since the particles are distinguished by
u vs. v Dirac solutions. The u and v solutions have the following properties:

Orthogonality u1u2 = u1u2 = 0 v1v2 = v1v2 = 0 (62)

Normalization u1u1 = u2u2 = 2mc v1v1 = v2v2 = −2mc (63)

Completeness u1u1 + u2u2 =6 p+mc v1v1 + v2v2 =6 p−mc (64)

Written in terms of momentum, the Dirac equation is [6 p−mc]ψ = 0; note the quantity in brackets.
Using Eq. (27), the propagator for a virtual particle obeying the Dirac equation is i times the
(matrix) inverse of this quantity in brackets

i

6 p−mc
= i

6 p+mc

p2 −m2c2
propagator for virtual electron . (65)

The propagator in Eq. (65) was rewritten simply to get the γµ in 6 p out of the denominator.

A virtual electron going one way is the same as a virtual positron going the opposite direction
in space and time. Either one leads to the same propagator. Physically, a reaction that requires
a virtual particle will get a propagator in its amplitude (as in nonrelativistic quantum physics,
amplitude squared is proportional to the probability that something will happen). A particle of
mass m must have an energy of at least mc2 to be real. Virtual particles do not have enough energy
to be real (Section 1.1.2). The further a virtual particle is from having enough energy to officially
exist, the smaller its propagator is and hence the smaller the probability that a reaction requiring
such a virtual particle will occur.

The Dirac equation may be derived from the Lagrangian

LDirac = ψ(ih̄c 6 ∂ −mc2)ψ . (66)

2.1.2 Spin-1 Massless Particle Field: Photon Equation

As discussed in the Electromagnetism, electromagnetic fields may be described in terms of different
variables and notations. Conceptually the simplest variables are just the electric field E and
magnetic field B, which are physical quantities that can be measured directly. To make the notation
more compact, the electric and magnetic fields can be expressed as derivatives (with respect to
space and time) of the scalar potential Φ and vector potential A, which themselves are not directly
measurable:

E = −∇Φ− 1

c

∂A

∂t
(67)

B = ∇×A (68)
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Since all that matters is the derivatives of Φ and A, one can add arbitrary constants to Φ and A
without affecting the actual physics. Different gauges are basically different conventions for defining
the precise values of Φ and A. All gauges yield the same physically measurable E and B in the
end, but various gauges make different calculations easier to do. Lorentz gauge will be chosen
in order to simplify the calculation below, whereas Coulomb gauge will be chosen to simplify the
calculation in Section 2.2.1. For more information on potentials, gauges, and other notation, see
Electromagnetism ?.?.

The scalar and vector potentials may be combined into a four-vector electromagnetic potential Aµ =
(Φ, A). Likewise, the charge density ρ and current density J can form a four-vector electric current
density, Jµ = (cρ, J). The notation may be modified even further to introduce an electromagnetic
field strength tensor Fµν :

Fµν ≡ ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 (69)

Using this notation, Maxwell’s equations may be written very compactly as

∂µF
µν =

4π

c
Jν Maxwell’s equations (70)

In the Lorentz gauge, ∂µA
µ = 0, Maxwell’s equations may be rewritten as

4π

c
Jν = ∂µ (∂µAν − ∂νAµ) = ∂2Aν . (71)

If there are no sources, Jν = 0, one obtains the equation for a free electromagnetic field,

∂2Aν = 0 Free electromagnetic field (Lorentz gauge) (72)

Making the quantum mechanical substitution ih̄∂µ → pµ and explicitly writing in the metric, Eq.
(72) may be rewritten as a momentum-space equation:[
−p2gµν

]
Aν = 0 Free electromagnetic field momentum eq. (Lorentz gauge) (73)

From Eq. (27), the propagator for a photon of an electromagnetic field is i times the (tensor)
inverse of the bracketed quantity in Eq. (73) (using g−1

µν = gµν):

−igµν
p2

Photon propagator (Lorentz gauge) (74)

Maxwell’s equations may be derived from the Lagrangian

L
Maxwell

= − 1

16π
FµνFµν −

1

c
JµAµ . (75)

Aµ solutions for photons coming in or out of an interaction may be written in the form

Aµincoming = aεµ(s)e
−ip·x/h̄ Aµoutgoing = aεµ ∗(s)e

+ip·x/h̄ , (76)

where a is the amplitude and the photon four-momentum is simply p = (|p| ,p). The polarization
vector ε(s) denotes one of two possible photon polarizations εµ(1) and εµ(2) that are orthogonal to

each other (εµ ∗(1)ε(2)µ = 0) and normalized (εµ ∗(s)ε(s)µ = 1). For example, for photons going in the ẑ

direction, one could choose εµ(1) = x̂ and εµ(2) = ŷ. Note that the Lorentz gauge condition ∂µA
µ = 0

implies that pµε
µ
(s) = 0.
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2.1.3 Interactions and Feynman Rules for QED

The electric current density Jµ that interacted with photons in Section 2.1.2 is the same as the
electric current density of electron or positron fields:

Jµ = ceψγµψ . (77)

Adding together the Lagrangians for electrons/positrons and photons from Eqs. (66) and (75) and
making the substitution from Eq. (77), one obtains the total Lagrangian for QED:

LQED = ψ(ih̄c 6 ∂ −mc2)ψ − 1

16π
FµνFµν − eψγµψAµ . (78)

The final term in Eq. (78) represents interactions between charged particles and photons. Inserting
it into Eq. (17) yields the electromagnetic coupling constant ge between particles of charge e and
photons,

ge ≡
√

4π

h̄c
e =

√
4πα ≈ 0.303 , (79)

where α ≡ e2/h̄c ≈ 1/137 is called the fine structure constant.

Based on the derivations above and in Sections 2.1.1 and 2.1.2, the Feynman rules for QED (com-
pared with those for the spinless toy theory in Section 1.2.3) are:

1. Label the four-momentum pi of each line, using an arrow to denote the positive direction. Also
note the spin on all external lines. Then multiply the relevant following factors together, starting
at the last fermion line in the diagram and working tip-to-tail backwards through the diagram.

2. For each initial or final particle (external line), include the appropriate factor:

Incoming electron: u Outgoing electron: u

Incoming positron: v Outgoing positron: v

Incoming photon: εµ Outgoing photon: εµ ∗

These factors are basically the wavefunctions of initial and final particles, and they account for the
momentum and polarization of those particles.

3. For each virtual particle (internal line), integrate over all possible four-momenta with a weighting
factor (propagator) that makes momenta further from the particle’s mass shell less likely to occur:∫

d4pi
(2π)4

i(6 pi +mic)

p2
i −m2

i c
2

for virtual fermions∫
d4pi
(2π)4

−igµν
p2
i

for virtual photons

where pi and mi are the four-momentum and mass of that virtual particle.

4. For each interaction vertex, include a factor

(igeγ
µ)(2π)4δ4(

∑
pin −

∑
pout) ,

in which pin and pout are the momenta entering and leaving the vertex. The electromagnetic inter-
action strength is ge ≡

√
4πα and the δ4 function ensures conservation of energy and momentum.

5. For each closed fermion loop, include a factor of −1 and take the trace.

6. Defining the initial and final momenta as pinitial and pfinal, the net result is

iA(2π)4δ4(
∑

pinitial −
∑

pfinal) .
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7. If two Feynman diagrams that contribute to the same process differ only by the interchange
of two identical fermion lines, multiply one of their amplitudes by −1 when the amplitudes are
summed. This is simply due to fermions acting like fermions.

As in Section 1, the probability of a process happening is proportional to |
∑
A|2. If |A|2 is spin-

dependent, it must be averaged over the possible initial particle spins and summed over the possible
final particle spins, as noted in Section 1. Then decays may be computed using Eqs. (34) and (35)
and interactions may be calculated using Eq. (42).

There are several rules which are very handy for evaluating Feynman diagrams. The first, called
Casimir’s trick, is useful for summing over the spins sa and sb of particles a and b:∑

sa

∑
sb

[u(a)Γ1u(b)] [u(a)Γ2u(b)]∗ =
∑
sa

∑
sb

[u(a)Γ1u(b)]
[
u(b)Γ2u(a)

]
=
∑
sa

u(a)Γ1 (6 pb +mbc) Γ2u(a) = Tr
[
Γ1 ( 6 pb +mbc) Γ2 (6 pa +mac)

]
, (80)

where Tr denotes the trace of the matrix and Γ2 ≡ γ0Γ†2γ
0. If either u on the left side of Eq. (80)

is replaced with a v, the corresponding mass on the right side changes sign.

Since Casimir’s trick reduces the evaluation of Feynman diagrams to multiplying matrices and
taking traces, here is a short catalog of useful matrix multiplication and trace theorems:

Basic properties: Tr(A+B) = Tr(A) + Tr(B) (81)

Tr(αA) = αTr(A) (82)

Tr(ABC) = Tr(CAB) = Tr(BCA) 6= Tr(noncyclic permutations) (83)

Contraction theorems: gµνg
µν = 4 (84)

γµγν + γνγµ = 2gµν → 6 a6 b+6 b6 a = 2a · b (85)

γµγ
µ = 4 (86)

γµγ
νγµ = −2γν → γµ 6 aγµ = −2 6 a (87)

γµγ
νγλγµ = 4gνλ → γµ6 a6 bγµ = 4a · b (88)

γµγ
νγλγσγµ = −2γσγλγν → γµ6 a6 b6 cγµ = −26 c6 b6 a (89)

Trace theorems:

Tr(product of odd number of γ matrices:) = 0 (90)

Tr(1) = 4 (91)

Tr(γµγν) = 4gµν → Tr(6 a6 b) = 4a · b (92)

Tr(γµγνγλγσ) = 4(gµνgλσ − gµλgνσ + gµσgνλ) → Tr(6 a6 b6 c6 d) = 4(a·bc·d− a·cb·d+ a·db·c) (93)

Tr(6 p16 p26 p3...6 p2n) = p1 · p2Tr(6 p3...6 p2n)− p1 · p3Tr (6 p26 p4...6 p2n) + ...+ p1 · p2nTr(6 p26 p3...6 p2n−1) (94)

Trace theorems with γ5 ≡ iγ0γ1γ2γ3:

Tr(product of γ5 & odd no. of γ matrices) = 0 (95)

Tr(γ5) = 0 (96)

Tr(γ5γµγν) = 0 → Tr(γ56 a6 b) = 0 (97)

Tr(γ5γµγνγλγσ) = 4iεµνλσ → Tr(γ56 a6 b6 c6 d) = 4iεµνλσaµbνcλdσ , (98)

where εµνλσ ≡


−1 if µνλσ has an even no. of inter-

changes of indices from 0123
+1 if odd no. of interchanges
0 if any two indices are the same

(99)
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2.2 Examples

Now we will use the QED Feynman rules to calculate a number of physical processes ranging from
Compton scattering to the anomalous magnetic moment of the electron.

2.2.1 Compton Scattering

Compton scattering is scattering of a photon off of an electron. Experimental measurement of this
process was particularly important in the very early days of quantum physics, since it showed that
light could behave as particles or quanta instead of just waves as predicted by Maxwell’s equations.

The lowest-order contributions to Compton scattering come from the Feynman diagrams in Fig.
6(a) and (b), and Fig. 6(c) shows the scattering process as it actually appears in physical space. The
electron has initial four-momentum p (chosen to be at rest in the lab frame) and final momentum
p′. The initial and final momenta of the photon are q and q′, respectively. Due to the collision, the
photon is scattered by an angle θ from its initial trajectory.

(a) (b) (c) 

θ 

p 

p’ 
q 

q’ 

p+q 

p-q’ 

p q’ 

q p’ 

q 

q’ 

p’ 
p=(mec2,0) 

(at rest) 

Figure 6. Compton scattering. (a) and (b) Lowest-order Feynman diagrams contributing to
the process. Note that (b) looks like (a) rotated clockwise by 90o. (c) Photon scattering angle in
the lab frame (electron initially at rest).

Conservation of momentum and energy for Fig. 6(c) can be used to express the final momentum
of the photon simply in terms of the initial photon momentum and the photon scattering angle θ.
Momentum conservation yields the relation

p′ = q− q′ =⇒
∣∣p′∣∣2 = |q|2 − 2 |q|

∣∣q′∣∣ cos θ +
∣∣q′∣∣2 (100)

The equation of energy conservation (divided by c) for Fig. 6(c) is

|q|+mec = |q|+
√
|p′|2 +m2

ec
2 =⇒ (mec+ |q| −

∣∣q′∣∣)2 =
∣∣p′∣∣2 +m2

ec
2 (101)

Equation (100) may be substituted into Eq. (101) to eliminate |p′|2 and solve for |q′|:∣∣q′∣∣ =
|q|

1 + |q|
mec

(1− cos θ)
=⇒ ω′ =

ω

1 + h̄ω
mec

(1− cos θ)
(102)

The relation in Eq. (102) was rewritten in terms of the initial and final angular frequencies of the
photon, ω ≡ |q| c/h̄ and ω′ ≡ |q′| c/h̄. As promised, the final photon momentum (or frequency)
simply depends on the initial photon momentum (or frequency) and the scattering angle.
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The next step is to calculate the differential cross section so that we will know how likely the photon
is to be scattered by a certain angle. This is a long calculation and makes use of all the QED rules
and tricks we have developed, so strap yourself in for a ride. Using the Feynman rules and defining
ε and ε′ as the initial and final polarizations of the photon, the amplitude for Fig. 6(a) is

Aa =
g2
e u(p′)6 ε′(6 p+6 q +mec)6 εu(p)

(p+ q)2 −m2
ec

2

=
g2
e u(p′)6 ε′(6 p+6 q +mec)6 εu(p)

2p · q
(using p2 = m2

ec
2 and q2 = 0)

=
g2
e u(p′)6 ε′ 6 ε(2p · ε+ 2q · ε−6 p−6 q +mec)u(p)

2p · q
[using Eq. (85)]

= − g2
e u(p′)6 ε′ 6 ε6 qu(p)

2p · q
, (103)

The last step in Eq. (103) used the Coulomb gauge (q·ε = 0), the freedom to choose the gauge and
frame such that p·ε = 0, and the Dirac equation [( 6 p−mec)u(p) = 0].

The diagram in Fig. 6(b) looks like the one in 6(a) rotated clockwise by 90o. Amplitudes for
Feynman diagrams are the same regardless of their orientation, provided that appropriate variable
names are changed. This important rule is called crossing symmetry. Thus the amplitude Ab
for Fig. 6(b) may be obtained from Aa by swapping the appropriate variables, ε↔ ε′ and q ↔ −q′:

Ab = − g2
e u(p′)6 ε6 ε′ 6 q′u(p)

2p · q′
. (104)

Adding the two amplitudes yields the total amplitude for Compton scattering to lowest order:

A = Aa +Ab = −g2
eu(p′)Γu(p) , where Γ ≡ 6 ε

′ 6 ε6 q
2p · q

+
6 ε6 ε′ 6 q′

2p · q′
. (105)

Note that Γ is the same as Γ except with the matrix order reversed.

Averaging over the initial electron spin (introducing a factor of 1
2) and summing over the final

electron spin yields〈
|A|2

〉
=

1

2

∑
spins

g4
e

∣∣u(p′)Γu(p)
∣∣2 =

g4
e

2
Tr
[
Γ (6 p+mec) Γ

(
6 p′ +mec

)]
[using Eq. (80)]

=
g4
e

2
Tr

[( 6 ε′ 6 ε 6 q
2p · q

+
6 ε6 ε′ 6 q′

2p · q′
)

(6 p+mec)

(6 q 6 ε6 ε′
2p · q

+
6 q′ 6 ε′ 6 ε
2p · q′

) (
6 p′ +mec

)]
=

g4
e

2
(Tr1 + 2Tr2 + Tr3) . (106)

The component traces in Eq. (106) are defined below and may be simplified using Eq. (94) and

Particles on mass shell =⇒ q2 = q′2 = 0 p2 = p′2 = m2
ec

2

Choice of gauge =⇒ ε · q = ε′ · q′ = 0 ε · p = ε′ · p = 0

Photon polarization normalized =⇒ ε2 = ε′2 = −1

p+ q = p′ + q′ → (p− q′)2 = (p′ − q)2 =⇒ p · q′ = p′ · q
p+ q = p′ + q′ → ε′ · (p+ q) = ε′ · (p′ + q′) =⇒ ε′ · q = ε′ · p′
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Tr1 ≡ 1

(2p · q)2
Tr[6 ε′ 6 ε6 q(6 p+mec)6 q 6 ε6 ε′(6 p′ +mec)] =

1

2p · q
Tr[6 ε′ 6 ε6 q 6 ε6 ε′ 6 p′]

=
1

2p · q
Tr[6 ε′ 6 q 6 ε′ 6 p′] =

2p · q′ + 4(ε′ · q)2

p · q
(107)

Tr2 ≡ 1

4(p · q)(p · q′)
Tr[6 ε′ 6 ε6 q(6 p+mec)6 q′ 6 ε′ 6 ε(6 p′ +mec)]

=
Tr[6 q′ 6 ε′ 6 ε6 ε′ 6 ε6 p]

2p · q′
+

2(q′ · ε)2

p · q′
− 2(q · ε′)2

p · q

= 4(ε′ · ε)2 − 2 +
2(q′ · ε)2

p · q′
− 2(q · ε′)2

p · q
(108)

Tr3 ≡ 1

(2p · q′)2
Tr[6 ε6 ε′ 6 q′(6 p+mec)6 q′ 6 ε′ 6 ε(6 p′ +mec)]

=
Tr1 with ε↔ ε′

and q ↔ −q′ =
2p · q − 4(ε · q′)2

p · q′
(109)

Some terms cancel out when the traces are added together, leaving〈
|A|2

〉
= g4

e

[
p · q′

p · q
+
p · q
p · q′

+ 4(ε′ · ε)2 − 2

]
= g4

e

[
ω′

ω
+
ω

ω′
+ 4(ε′ · ε)2 − 2

]
, (110)

where the last step used the lab frame in which p = (mec,0) and thus p·q = meh̄ω and p·q′ = meh̄ω
′.

The recurring ratio ω′/ω may be found from Eq. (102).

Inserting Eq. (110) into Eq. (43), one obtains(
dσ

dΩ

)
pol.

=
1

4
r2
e

(
ω′

ω

)2 [ω′
ω

+
ω

ω′
+ 4(ε′ · ε)2 − 2

]
Polarized Klein-Nishina formula
for Compton scattering

(111)

where re ≡ e2/(mec
2) ≈ 2.8 × 10−15 m is called the classical radius of the electron, since in low-

energy collisions the electron seems to have a radius of that order, as is becoming manifest in this
calculation. Of course, the electron is really a point particle, and this apparent radius is simply a
measure of the “effective reach” of the electric field surrounding the electron.

One can sum over the initial photon polarization ε = ε1 or ε2 and the final polarization ε′ = ε′1
or ε′2. One is free to define the coordinate axes to correspond to the initial polarizations, so that
ε1 = x̂ and ε2 = ŷ. After being scattered by an angle θ as in Fig. 6(c), the outgoing photon has
the possible polarization states ε′1 = x̂ and ε′2 = cos θŷ− sin θẑ. Thus the sum over initial and final
photon polarizations is

2∑
i=1

2∑
j=1

(ε′i · εj)2 = 1 + cos2 θ = 2− sin2 θ . (112)

Averaging over the initial photon polarization (using a factor of 1
2) and summing over the final

polarization, the complete expression for the differential cross section becomes(
dσ

dΩ

)
unpol.

=
1

2

2∑
i=1

2∑
j=1

(
dσ

dΩ

)
pol.

=
1

2
r2
e

(
ω′

ω

)2 (ω′
ω

+
ω

ω′
− sin2 θ

)
Unpolarized
Klein-Nishina formula

(113)
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If the photon energy is not changed much by the collision, ω′ ≈ ω, Eqs. (111) and (113) reduce to
the differential cross section for classical Thomson scattering of a photon by an electron,

dσ

dΩ
= r2

e
(ε′ · ε)2 for polarized Thomson scattering (114)

=
1

2
r2
e
(1 + cos2 θ) for unpolarized Thomson scattering (115)

Equation (115) may easily be integrated to obtain the total cross section,

σ =

∫ π

0
(dθ 2π sin2 θ)

1

2
r2
e
(1 + cos2 θ) =

8π

3
r2
e

Thomson cross section (116)

Of course, the exact Klein-Nishina cross section can also be integrated from Eq. (113), but the
result is more mathematically frightening than physically enlightening.

2.2.2 Electron-Positron Annihilation

As mentioned in Section 1, particles of matter and antimatter can annihilate each other. As an
example, an electron and a positron can annihilate each other, converting their total energy into
two photons. The two lowest-order Feynman diagrams contributing to this process are shown in
Fig. 7 (a) and (b); these diagrams are identical except that the two outgoing photons are swapped.
The incoming electron and positron have four-momenta p and p′ respectively, and the outgoing
photons have momenta q and q′ and polarizations ε and ε′.

(a) (b) (c) 

θ 
θ’ 

p 

p’ 

q 

q’ 

p-q p-q’ 

p 

q p’ 

q’ 

p’ 

k 

k’ 

p=(mec2,0) 
(at rest) 

Figure 7. Pair annihilation of an electron and a positron into two photons. (a) and
(b) Lowest-order Feynman diagrams contributing to the process. The only difference between the
two diagrams is that the identities of the two photons have been interchanged. Note that these
diagrams look the same as Fig. 6(b) with the bottom half twisted. (c) Angle of photon emission
relative to the incoming positron trajectory in the lab frame (electron initially at rest).

The simplest way to calculate the cross section for electron-positron annihilation is to note the
similarity of the diagrams in Fig. 7 to those in Fig. 6 for Compton scattering. As has been
explained, crossing symmetry dictates that the amplitude remains the same if the diagrams look
the same. In this case, one can use the amplitude from Eq. (110), make the change q → −q since
the momentum of both photons is now outgoing, and include an overall factor of -1 because an
electron line has become a positron line:
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〈
|A|2

〉
= g4

e

[
p · q′

p · q
+
p · q
p · q′

− 4(ε′ · ε)2 + 2

]
= g4

e

[
−ω
′

ω
− ω

ω′
+ 4(ε′ · ε)2 − 2

]
. (117)

As with Compton scattering, we are using the lab frame in which the electron is at rest so that
p = (mc,0) and thus p · q = meh̄ω and p · q′ = meh̄ω

′.

Using Eq. (44), the differential cross section in this lab frame is(
dσ

dΩ

)
pol.

=
1

16
r2
e

mec

|p′|
mec

2(E′ +mec
2)

(E′ +mec2 − |p′| c cos θ)2

[
ω′

ω
+
ω

ω′
− 4(ε′ · ε)2 + 2

]
(118)

As in the case of Compton scattering, the sum over the photon polarizations is

2∑
i=1

2∑
j=1

(ε′i · εj)2 = 1 + cos2 θ′ = 2− sin2 θ′ , (119)

where θ′ is the angle between the photons’ trajectories. Unlike with Compton scattering, θ′ is not
necessarily the same as the collision angle θ. The other difference from Compton scattering is that
now both photons are in the final state and both polarizations are simply summed over, so no
factor of 1/2 is needed to average the polarizations of one of the photons.

Using Eq. (119), the polarization-averaged result is(
dσ

dΩ

)
unpol.

=
1

4
r2
e

mec

|p′|
mec

2(E′ +mec
2)

(E′ +mec2 − |p′| c cos θ)2

[
ω′

ω
+
ω

ω′
+ sin2 θ′

]
(120)

For nonrelativistic collision velocities, the calculation may be greatly simplified using E′ ≈ mec
2 �

|p′| c. This is nearly the same as the center-of-mass frame, so the created photons are emitted
essentially back-to-back (θ′ ≈ π) and have equal energy ω ≈ ω′. Using these simplifications, the
differential cross section becomes

dσ

dΩ
=

1

4
r2
e

c

v′
, (121)

in which v′ is the velocity of the positron relative to the electron.

Simply multiplying by the 4π solid angle, the total cross section is

σ = πr2
e

c

v′
. (122)

This answer makes physical sense. The positron must approach the electron within a distance of
the order of the classical electron radius to annihilate, and the faster it zips by the less likely it is
to interact and annihilate.
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2.2.3 Electron-Proton Scattering

Elastic scattering of an electron off a much more massive charged particle such as a proton is called
Mott scattering. Provided that the incident electron energy E1 is less than the proton rest energy,
E1 << mpc

2, one can neglect the internal three-quark structure of the proton and treat it as a point
particle. To lowest order, only the Feynman diagram in Fig. 8(a) contributes to this scattering
process, and from the Feynman rules its amplitude is

A = − g2
e

(p1 − p′1)2

[
u(1′)γµu(1)

] [
u(2′)γµu(2)

]
(123)

(a) 

p1-p1’ 

p1 p1’ 

p2 p2’ 

(b) 

p1 

p2=(mc2,0) 

p1’ 

p2’ 

θ  

Figure 8. Mott scattering of an electron from a proton (or other very massive charged
particle). (a) Only one Feynman diagram contributes to the process in the lowest order. (b)
Electron scattering angle in the lab frame (proton initially at rest).

One can include a factor of 1/4 to average over the initial spins for the electron and proton:〈
|A|2

〉
=

1

4

∑
all spins

g4
e

(p1 − p′1)4

[
u(1′)γµu(1)

] [
u(2′)γµu(2)

] [
u(1′)γνu(1)

]∗ [
u(2′)γνu(2)

]∗
=

g4
e

4(p1 − p′1)4
Tr
[
γµ (6 p1 +mec) γ

ν (6 p′1 +mec
)]

Tr
[
γµ (6 p2 +mpc) γν

(
6 p′2 +mpc

)]
(124)

The first trace in Eq. (124) is

Tr
[
γµ (6 p1 +mec) γ

ν (6 p′1 +mec
)]

= Tr
[
γµ 6 p1γ

ν 6 p′1
]

+ (mc)2Tr [γµγν ]

= 4
[
pµ1p
′ν
1 + p′µ1 p

ν
1 − gµν(p1 · p′1)

]
+ (mec)

24gµν (125)

The second trace in Eq. (124) is the same as Eq. (125) except with the substitutions me → mp,
1 → 2, and 1′ → 2′ and with the Greek indices lowered. Thus the amplitude from Eq. (124)
becomes〈
|A|2

〉
=

8g4
e

(p1 − p′1)4

[
(p1·p2)(p′1·p′2) + (p1·p′2)(p2·p′1)− p1·p′1m2

pc
2 − p2·p′2m2

ec
2 + 2m2

pm
2
ec

4
]

(126)
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Since mp � me, one may neglect the recoil of the proton. Thus in the lab frame (proton rest
frame), the momenta are p1 = (E1/c,p1), p′1 = (E′1/c,p

′
1), and p2 = p′2 = (mpc,0), where E1 = E′1

and |p1| = |p′1|. If θ is the electron scattering angle as shown in Fig. 8(b), the terms in Eq. (126)
may be simplified:

(p1−p′1)2 =
E2

1 + E′21 − 2E1E
′
1

c2
−|p1|2−

∣∣p′1∣∣2 +2p1·p′1 = −2 |p1|2 (1−cos θ) = −4 |p1|2 sin2 θ

2

(p1 · p′1) =
E2

1

c
− p1 · p′1 = m2

ec
2 + |p1|2 − |p1|2 cos θ = m2

ec
2 + 2 |p1|2 sin2 θ

2
(p1 · p2)(p′1 · p′2) = (p1 · p′2)(p2 · p′1) = (mpE1)2

(p2 · p′2) = (mpc)
2

=⇒
〈
|A|2

〉
= g4

e

(mpc)
2
[
(mec)

2 + |p1|2 cos2(θ/2)
]

|p1|4 sin4(θ/2)
(127)

Compared to the proton, the electron is nearly massless, so the process resembles Compton scatter-
ing of a massless particle off a massive one. Therefore, one may plug Eq. (127) into the expression
for dσ/dΩ from Eq. (43) with E1 = E′1:

dσ

dΩ
=

(
αh̄

2 |p1|2 sin2(θ/2)

)2 [
(mec)

2 + |p1|2 cos2 θ

2

]
Mott scattering
formula

(128)

=

(
e2

2mev2
1 sin2(θ/2)

)2
for (mec)

2 � |p1|2 = (mev1)2 −
Rutherford scattering formula

(129)

2.2.4 Electron-Electron Scattering

Elastic scattering of two identical electrons (or other charged fermions) is called Møller scattering,
and is shown in Fig. 9. The amplitude Aa for Fig. 9(a) is the same as Eq. (123) for Fig. 8(a),
and the amplitude Ab for Fig. 9(b) is also the same, except with the final particles interchanged,
3↔ 4. Using QED Feynman Rule 7, the total amplitude A is

A = Aa −Ab = −g
2
e [u(1′)γµu(1)] [u(2′)γµu(2)]

(p1 − p′1)2
+
g2
e [u(2′)γµu(1)] [u(1′)γµu(2)]

(p1 − p′2)2
(130)

The spin-averaged square of the amplitude may be written as〈
|A|2

〉
=

〈
|Aa|2

〉
− 〈AaA∗b〉 − 〈A∗aAb〉+

〈
|Ab|2

〉
(131)

Since the electrons are on their mass shell, p2
1 = p′21 = p2

2 = p′22 = mec
2, conservation of momentum

and energy yields the useful relations

p1 + p2 = p′1 + p′2 → p2
1 + p2

2 + 2p1 · p2 = p′21 + p′22 + 2p′1 · p′2 → p1 · p2 = p′1 · p′2 (132)

p1 − p′1 = p′2 − p2 → p1 · p′1 = p2 · p′2 and p1 − p′2 = p′1 − p2 → p1 · p′2 = p2 · p′1 (133)

For high energies, one can neglect the electron mass when it appears in the equations, me → 0.〈
|Aa|2

〉
is the same as Eq. (126) with mp → me → 0 and may be simplified using Eqs. (132-133):〈

|Aa|2
〉

=
8g4
e

(p1 − p′1)4

[
(p1·p2)(p′1·p′2) + (p1·p′2)(p2·p′1)

]
=

8g4
e

(p1 − p′1)4

[
(p1·p2)2 + (p1·p′2)2

]
(134)
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(a) (b) (c) 
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Figure 9. Møller scattering of two electrons. (a) and (b) The two lowest-order Feynman
diagrams contributing to the process are the same except that identities of the outgoing electrons
are interchanged. (c) The scattering angle in the center-of-mass frame.

By repeatedly using the steps from the derivation of Eq. (80), 〈AaA∗b〉 may be rewritten as a trace

〈AaA∗b〉 =
1

4

∑
all spins

g4
e [u(1′)γµu(1)] [u(2′)γµu(2)] [u(2′)γνu(1)]∗ [u(1′)γνu(2)]∗

(p1 − p′1)2(p1 − p′2)2

=
g4
e

4(p1 − p′1)2(p1 − p′2)2
Tr
[
γµ(6 p1 +mec)γ

ν(6 p′2 +mec)γµ(6 p2 +mec)γν(6 p′1 +mec)
]

=
g4
e

4(p1 − p′1)2(p1 − p′2)2
Tr
[
γµ 6 p1γ

ν 6 p′2γµ 6 p2γν 6 p′1
]

since me = 0 here

= −8g4
e

(p1·p2)2

(p1 − p′1)2(p1 − p′2)2
using Eqs. (94) and (132) (135)

In the CM frame [Fig. 9(c)] with each electron having energy E, one may use Eqs. (48-49) and

p1 · p2 =
2E2

c2
p1 · p′1 =

E2

c2
(1− cos θ) p1 · p′2 =

E2

c2
(1 + cos θ) (136)

With the substitution 1′ → 2′, 〈A∗aAb〉 is the same as Eq. (135) and
〈
|Ab|2

〉
is the same as Eq.

(134), so the total
〈
|A|2

〉
is〈

|A|2
〉
=

8g4
e{(p1−p′2)4[(p1·p2)2 +(p1·p′2)2]+(p1−p′1)4[(p1·p2)2 +(p1·p′1)2]+2(p1·p2)2(p1−p′1)2(p1−p′2)2}

(p1 − p′1)4(p1 − p′2)4

= 4g4
e

(
1− 4

sin2 θ

)2

(137)

Using Eq. (51), the differential cross section is

dσ

dΩ
=

1

8

(
mec

2

E

)2

r2
e

(
1− 4

sin2 θ

)2 Møller scattering formula
for E � mec

2 in CM frame
(138)
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2.2.5 Renormalization

As outlined so far, field theory expands a physical process into a series of contributing Feynman
diagrams with increasing numbers of vertices. Because the vertex coupling constant is g � 1,
the diagrams with the fewest vertices should yield a good approximation of the physical process.
Diagrams of higher order (more vertices) should contribute much less. Unfortunately, if those
higher-order diagrams contain closed loops, their contribution is not very small–it is actually infinite.

Renormalization is a technique for (1) convincing ourselves that these infinities are merely math-
ematical artifacts, not real physical effects, and hiding them by “renormalizing” what we mean by
a particle’s mass and charge, and (2) correctly calculating the finite (indeed very small) physically
observable effects that do arise from loop diagrams after the infinities have been dispatched.

As an example, consider a virtual photon traveling between two vertices in some larger Feynman
diagram. Higher-order diagrams represent the possibility that the photon might briefly turn into a
virtual electron-positron pair one or more times during transit, as shown in Fig. 10.

+ … + + 

Figure 10. Renormalization of photon lines. An internal (virtual) photon line that is part
of some larger Feynman diagram, plus the higher-order processes which can contribute.

Each virtual photon line in these diagrams is calculated with the usual photon propagator,

D ≡ −igµν
k2

. (139)

Each electron-positron pair loop (including the vertices on each side of it) introduces a factor of

Π ≡ g2
e

∫
d4p

(2π)4
Tr

(
γµ

i

6 p−mc
γν

i

6 p− 6 k −mc

)
. (140)

This integral is the heart of the problem. Including the d4p, it has more powers of p in the numerator
than the denominator, so when it is integrated up to the infinite momentum that is possible for
virtual particles, it blows up and yields an infinite contribution.

The sum of the virtual photon graphs in Fig. 10 (including the vertices at each end) is∑
(photon graphs) = (igeγ

µ)(D +DΠD +DΠDΠD + ...)(igeγ
ν)

= −γµg2
eD

∞∑
n=0

(ΠD)nγν = −γµ
(

g2
e

1−ΠD

)
Dγν (141)

Our goal is redefine (ge/
√

1−ΠD) as the “observed” coupling constant, so that the resulting
expression just looks like a plain virtual photon going between two vertices. That way loop diagrams
would always be implicity accounted for without having to explicitly draw them each time.
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After several pages of mathematical torture [1-4], the integral for Π can be reduced to

Π = igµνk2 g2
e

12π2

[
ln

(
M2

m2

)
︸ ︷︷ ︸

Infinity to hide

− f

( ∣∣k2
∣∣

m2c2

)]
︸ ︷︷ ︸

Small finite part to calculate

, (142)

where mass M →∞ corresponds to an arbitrarily large upper energy limit Mc2 resulting from the
integral and

f(x) ≡ 6

∫ 1

0
z(1− z) ln[1 + xz(1− z)]dz ≈

{
x/5 for x� 1
lnx for x� 1

(143)

Plugging Eq. (142) into Eq. (141), one finds

∑
(photon graphs) = −γµ

 g2
e

1 + g2
e

12π2 ln
(
M2

m2

)
− g2

e
12π2 f

(
|k2|
m2c2

)
Dγν

= −γµ
 g2

e renorm

1− g2
e renorm
12π2 f

(
|k2|
m2c2

)
Dγν , (144)

in which the renormalized coupling constant has been defined as

ge renorm ≡ ge√
1 + g2

e
12π2 ln

(
M2

m2

) . (145)

The renormalized coupling constant ge renorm is what is always observed. The unrenormalized
coupling constant ge is not physically measurable and may be defined however we want. In this case,
we are defining ge to contain an infinity that exactly cancels out the infinity from the ln(M2/m2).
That sounds strange, but it is legal. Since ge ∝ e, renormalizing the coupling constant is equivalent
to renormalizing the charge. In general, we will use the measured charge or coupling constant, drop
the “renorm” for simplicity, and go back to ignoring loop graphs in internal (virtual) photon lines
as we have done until now. For similar reasons, loops in external (real) photon lines can also be
ignored as long as the measured charge or coupling constant is used.

Note that after renormalizing away the infinity, a small measurable correction still remains in Eq.
(144). The effective coupling constant is a weak function of the momentum k2 and thus is no longer
truly constant; it is referred to as a running coupling constant. The physical explanation is
that a real electric charge is surrounded by a cloud of virtual electron-positron pairs. The effective
charge that is measured depends on how deeply you penetrate through the cloud and approach the
bare charge, or equivalently how much momentum you have.

A similar process can be used with loops in electron lines, such as those shown contributing to the
virtual electron line in Fig. 11. In this case, the loops represent the electron emitting and then
quickly reabsorbing a virtual photon. The propagator for a simple virtual electron line is still

S ≡ i

6 p−mc
, (146)

and each loop contributes a factor of

ε ≡ −g2
e

∫
d4k

(2π)4
γµ
(−igµν

k2

)(
i

6 p− 6 k −mc

)
γν . (147)

As before, simply counting powers of k in this integral (including d4k) shows that it is infinite.
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+ … + + 

Figure 11. Renormalization of electron lines. An internal (virtual) electron line that is part
of some larger Feynman diagram, plus the higher-order processes which can contribute.

The sum of the virtual electron graphs shown in Fig. 11 is∑
(electron graphs) = S + SεS + SεSεS + ...

= S
∞∑
n=0

(εS)n =
S

1− εS

=
i

6 p−mc− iε
=

i

6 p−mrenormc
, (148)

where mrenorm ≡ m+ iε/c is the renormalized electron mass. The bare electron mass that is never
observed, m, can be defined to contain an infinity that will exactly cancel the infinity from ε,
resulting in a renormalized mass of the actual observed value. Therefore we can use the measured
mass value, drop the “renorm,” and return to ignoring loop graphs in all electron lines.

By Taylor-expanding the integral in Eq. (147), one can show that it should renormalize charge as
well as mass. Fortunately, this contribution to charge renormalization is exactly cancelled out by
the contribution from loops at vertices that will be considered in the next section. This miracle
is called the Ward Identity. Thus the only net effect on charge renormalization comes from Eq.
(145). For more details about renormalization, see [2-4].



36 Relativistic Quantum Field Theory

2.2.6 Anomolous Magnetic Moment of the Electron

Having considered renormalization due to loops in electron and photon lines, we turn finally to
renormalization from loops at vertices. As usual, this leads to an ignorable infinity and a physically
measurable small correction, which in this case is the anomolous magnetic moment of the electron.

Before tackling the anomolous moment, we will calculate the basic magnetic moment µe of the
electron. This comes from a simple interaction vertex between an electron and an electromagnetic
field, as shown in Fig. 12(a). As revealed in Eq. (17), the amplitude of a simple vertex is
proportional to the interaction Lagrangian LInt . We will write this particular calculation in terms
of LInt instead of the amplitude. Using sneaky tricks, we can rewrite the vertex interaction until it
clearly looks like the Lagrangian (negative of the potential energy) of a magnetic moment µe in a
magnetic field:

LInt = −eu(p′)γµu(p)Aµ(q = p′ − p)

= − e

2mec
u(p′)[ (p′ + p)µ︸ ︷︷ ︸

Neglect for nonrelativistic electron & static magnetic field

+iσµνqν ]u(p)Aµ(q) via Gordon identity (see below)

= − e

2mec
u(p′)σµνu(p)︸ ︷︷ ︸
electron spin S

iqνAµ(q)︸ ︷︷ ︸
h̄∇×A=h̄B

= µe ·B where µe = − eh̄

2mec
S . (149)

(a) (b) 

p p’ 

q = p’ - p q = p’ - p 

p p’ 

Aµ  Aµ  

Figure 12. Electron magnetic moment and renormalization of vertices. (a) A simple
QED vertex representing an electron interacting with an electromagnetic field may be used to
calculate the basic magnetic moment of the electron. (b) Loops at the vertex produce unphysical
infinities, which may be swept under the rug by the mathematical process of renormalization, and
a small observable correction factor, the anomolous magnetic moment of the electron.
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The derivation of Eq. (149) used the Gordon identity, which may be proved as follows:

u(p′)γµu(p) =
1

2mec
u(p′)[(p′ + p)µ + iσµν(p′ − p)ν ]u(p) Gordon identity (150)

=⇒ 0 =
1

2mec
u(p′)[(p′ + p)µ + iσµν(p′ − p)ν ]u(p) − u(p′)γµu(p)

= u(p′)[p′µ + pµ + iσµνp′ν − iσνµpν − 2mecγ
µ]u(p)

= u(p′)[p′µ + pµ + (γνγµ − gµν)p′ν − (gνµ − γµγν)pν − 2mecγ
µ]u(p)

= u(p′)(6 p′ −mec)︸ ︷︷ ︸
=0 by Dirac eq.

γµu(p) + u(p′)γµ (6 p−mec)u(p)︸ ︷︷ ︸
=0 by Dirac eq.

The loop diagram shown in Fig. 12(b) modifies this process with a higher-order correction term,

A = ieu(p′)(γµ + Λµ)u(p)Aµ(q = p′ − p) , (151)

where the correction term is given by the integral

Λµ = −g2
e

∫
d4k

(2π)4
γλ
(−igλσ

k2

)
γσ
(

i

6 p′− 6 k −mec

)
γµ
(

i

6 p− 6 k −mec

)
. (152)

This integral is logarithmically divergent (with as many powers of k in the denominator as the
numerator). After pages of horrifying integration [2-4], Λµ may be reduced to the form

Λµ = ∞γµ +
α

2π

iσµν(p′ − p)ν

2mec
, (153)

where α ≡ e2/(h̄c) ≈ 1/137 is the fine structure constant.

The physically meaningless infinity could be hidden by further renormalizing the charge at the
vertex, but we don’t even have to do that; it exactly cancels the charge renormalization contribution
from Eq. (148) and can be ignored. The second term in Eq. (153) is the important one–a small
but measurable correction to the electron magnetic moment, so that the total moment is

µe = − eh̄

2mec

(
1 +

α

2π

)
S (154)

Vertex graphs with more loops would just produce additional ignorable infinities and correction
factors that are a factor of α smaller for each extra loop, so they won’t be considered here. As it is,
Eq. (154) agrees with experiment to within 10−6. While tree graph effects can also be calculated
using more classical (non-QED) approaches, only QED can predict loop effects, and as shown by
the anomolous magnetic moment of the electron, it gets them right with impressive accuracy.
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3 Weak Nuclear Force: Vector Boson and Electroweak Theories
The weak nuclear force is mediated by massive spin-1 bosons, the charged W+ and W− and
uncharged Z0, and causes processes such as the decay of muons and neutrons. The weak nuclear
force can be combined with electromagnetism into the unified electroweak theory.

3.1 Intermediate Vector Boson Theory

A simple approach to the weak nuclear force is to focus on theW± and ignore the Z0 and electroweak
interactions for now. This is called the Intermediate Vector Boson (IVB) theory, since the W boson
is represented by a vector field (spin-1) and acts as an intermediary in weak interactions.

The Lagrangian density for a field of free spin-1 particles of mass m is

L = − 1

16π
FµνFµν +

1

8π

(
mc

h̄

)2

AνAν , (155)

where Fµν ≡ ∂µAν − ∂νAµ as in the case of the photon.

Plugging this Lagrangian into the Euler-Lagrange equation gives the Proca field equation:

∂µF
µν +

(
mc

h̄

)2

Aν = 0 Proca eq. for massive spin-1 particles (156)

Note that the Proca equation reduces to the equation for a free photon if m = 0.

The momentum-space version of the Proca equation is found by substituting pµ = ih̄∂µ:

h̄2∂µ (∂µAν − ∂νAµ) + m2c2Aν = 0 Regular-space Proca equation[(
−p2 +m2c2

)
gµν + pµpν

]
Aν = 0 Momentum-space Proca equation (157)

Using Eq. (27), the propagator for the W in the Feynman rules is i times the (tensor) inverse of
the expression in brackets in Eq. (157):

−i
p2 −m2

W
c2

(
gµν −

pµpν
m2
W
c2

)
Propagator for W (158)

The W± mass mW = 81.8 GeV/c2 is so large that p2 � m2
W
c2 is usually a very good approximation

(except for very high-energy collisions):
igµν
m2
W c

2
W propagator for p2 � m2

W c
2 (159)

All leptons and quarks can interact with the W±. Figure 13 shows vertices for interactions with
the W−. The W+ is just the antiparticle of the W−, so these vertices may be viewed as emission
of a W− or absorption of a W+. These vertices could also be drawn with all the arrows reversed.
For the Feynman rules, the factor for each vertex is

−igW
2
√

2
γµ(1− γ5) , (160)

in which gW is the weak coupling constant. Not including the 2
√

2 in gW is simply a convention.

For quarks, this vertex factor needs to be modified slightly. Whereas the weak interaction turns
a simple electron into an electron neutrino [Fig. 13(a)], it turns a d′ quark state, a superposition
of a d and an s quark, into a u quark [Fig. 13(b)]. Likewise, it can turn an s′ quark state, a
superposition of an s and a d quark, into a c quark [Fig. 13(c)]. As shown in Fig. 14(a), two
orthogonal axes may be used to plot the d and s quark states. The d′ and s′ superpositions are
quark states that are obtained by rotating the axes by the Cabibbo angle θC , which can be done
with a simple rotation matrix such as was used in classical mechanics:(

d′

s′

)
=

(
cos θC sin θC
− sin θC cos θC

)(
d
s

)
. (161)
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(a) (b) (c) (d) 

W-  W-  W-  W-  

b t u l- νl  c 
d cos θc 

+ s sin θc 
s cos θc 

- d sin θc 

Figure 13. Weak interaction vertices in IVB theory. (a) A lepton l− (an electron, muon,
or tau) can emit a W− and turn into a neutrino of the corresponding type (νe, νµ, or ντ ). (b)
An initial quark that is a mixture of down and strange quark states [see Fig. 14(a)] can emit a
W− and turn into an up quark. If the type of initial quark is known (d or s), the corresponding
factor (cos θc or sin θc) can simply be incorporated into the vertex factor. (c) Similarly, a strange
or down quark can emit a W− and turn into a charm quark. (d) A bottom quark can emit a W−

and turn into a top quark; in this case there is very little mixing with the other quark types. One
can reverse all of the arrows in these vertices, and as always, a particle going one way is equivalent
to an antiparticle going the other way.

Note that if θC = 0, d′ and s′ are just the ordinary down and strange quark states, respectively.
Because θC = 13.1o experimentally, there is a small but appreciable amount of mixing between the
down and strange quark states in weak interactions. If the quark types in an interaction are known,
the appropriate factor of cos θC or sin θC may simply be incorporated into the vertex factor.

As shown in Fig. 13(d), the weak interaction generally just turns a bottom quark into a top quark.
There is a small amount of mixing with the other quark states, but it is less than 0.1% and the
particles involved are so massive that they are seldom created; therefore this mixing will not be
considered here. In order to include it, one could generalize Eq. (161) to a 3x3 rotation matrix
that relates ordinary d, s, and b quark states to rotated d′, s′, and b′ states. Such a rotation matrix
is called the Kobayashi-Maskawa matrix. Incidentally, it is solely a convention to rotate the d, s,
and b instead of the corresponding u, c, and t quarks; either choice leads to the same final result.

To look ahead, Figure 14(b) shows that in the electroweak unified theory, a similar rotation of states
turns the B and W 3 bosons into the photon and the Z0 boson, as will be discussed in Section 3.3.

The electron, muon, and tau neutrinos are really only distinguishable by whether they interact with
the electron, muon, or tau at a W± vertex. Therefore, any rotation of neutrino states is already
built into the definitions of the neutrino types.

Other than the W propagator and the vertex factors noted above, the Feynman rules for the IVB
theory of weak interactions are exactly like the Feynman rules for QED.
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(a) (b) 

θc  θw  
d  

d’  

s  s’  

Bµ  

Aµ  

W3 µ  Zµ  

Figure 14. Mixing or rotation of particle states in weak interactions. Two distinct
types of particles may be represented by orthogonal axes. Superpositions of those two types of
particles may form two new types of particles that are distinct from each other (still on orthogonal
axes). This is equivalent to rotating the axes that define the two basic types of particles. (a)
In interactions with the W−, down and strange quark states mix to form new orthogonal d’ and
s’ quark states that have been rotated by the Cabibbo angle, where θc = 13.1o experimentally.
(b) In the GWS electroweak theory, two ”original” neutral spin-1 bosons W3 and B have mixed
to form the two observed neutral spin-1 bosons, Z0 (represented by the field Zµ) and the photon
(represented by the field Aµ). This mixing is equivalent to rotation by the weak mixing angle θw,
where θw = 28.7o experimentally.
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3.2 Examples

The weak force can be involved in scattering, but its most important and common effects are certain
decay processes. Unfortunately, calculations of weak decays are particularly nasty because they
involve three final particles, not two as in Eq. (34). Just take a deep breath and we’ll dive in.

3.2.1 Muon Decay

As mentioned earlier, a muon is essentially an overweight electron. It decays into a real electron
(plus a muon neutrino and electron anti-neutrino) with a lifetime that will now be calculated.
Applying the Feynman rules to the muon decay shown in Fig. 15(a) yields the amplitude,

A =
g2
W

8m2
W
c2

[
u(3)γµ(1− γ5)u(1)

] [
u(4)γµ(1− γ5)v(2)

]
. (162)
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Figure 15. The weak interaction mediates muon and neutron decays. (a) A muon decays
into an electron, electron anti-neutrino, and muon neutrino. (b) A neutron decays into a proton,
electron, and electron anti-neutrino. The neutron and proton are both composed of three quarks;
the weak interaction changes one of them from a down to an up quark, thus turning the neutron
into a proton.

The spin-averaged and -summed square of the amplitude may be found by using Casimir’s trick
from Eq. (80) and including a factor of 1/2, since neutrinos have one spin state instead of two:〈
|A|2

〉
=
∑
spins

|A|2 =
1

2

1

64

(
gW
mW c

)4

(163)

×Tr
[
γµ(1− γ5)(6 p1 +mec)γ

ν(1− γ5) 6 p3

]
︸ ︷︷ ︸

from trace theorems: 8[pµ1 pν3+pν1p
µ
3−gµν(p1·p3)−iεµνλσp1λ

p3σ ]

Tr
[
γµ(1− γ5) 6 p2γν(1− γ5)(6 p4 +mµc)

]
︸ ︷︷ ︸

8[p2µp4ν+p2ν p4µ−gµν(p2·p4)−iεµνκτpκ2p
τ
4 ]

= 2

(
gW
mW c

)4

(p1 · p2)(p3 · p4) [using εµνλσεµνκτ = −2(δλκδ
σ
τ − δλτ δσκ)] (164)
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Using momentum/energy conservation in the muon’s rest frame, (p1 · p2) and (p3 · p4) are

p1 = (mµc,0) → p1 · p2 = mµE2

p1 = p2 + p3 + p4 → (p3 + p4)2 = (p1 − p2)2

→ p3 · p4 = −p1 · p2 +
1

2
(p2

1 + p2
2 − p2

3 − p2
4)

= −mµE2 +
c2

2

(
m2
µ +m2

νe −m
2
νµ −m

2
e

)
(165)

Thus the amplitude squared is〈
|A|2

〉
=

(
gW
mW c

)4

mµE2

[(
m2
µ +m2

νe −m
2
νµ −m

2
e

)
c2 − 2mµE2

]
(166)

≈
(
gW
mW c

)4

m2
µE2(mµc

2 − 2E2) , (167)

where me and mν were neglected because they are much smaller than mµ.

The decay rate may be found from Eqs. (30) and (167) with δ4(
∑
p) = δ(

∑
E/c)δ(

∑
p), E1 =

mµc
2, p1 = 0, E2 ≈ |p2| c, E3 ≈ |p3| c, and E4 ≈ |p4| c:

Γ =
1

16(2π)5h̄mµ

∫
d3p2

∫
d3p3

∫
d3p4

〈
|A|2

〉
|p2| |p3| |p4|

δ(mµc−|p2|− |p3|− |p4|)δ3(p2 + p3 + p4)

=
1

16(2π)5h̄mµ

∫
d3p2

∫
d3p4

〈
|A|2

〉
δ(mµc−|p2|− |p3|− |p4|)
|p2| |p3| |p4|

, (168)

where now |p3| = |p2 + p4| after the integration over the δ3 .

One can rewrite the variable of integration d3p2 using p3 and the angle θ between p2 and p4:

p3 =
√
p2

2 + p2
4 + 2p2p4 cos θ → dp3 = −p2p4 sin θdθ

p3
with p2 and p4 held fixed

=⇒ d3p2 = 2π sin θ dθ |p2|2 dp2 = −2π |p2| dp2 dp3
|p3|
|p4|

(169)

Therefore the decay rate is

Γ =
1

(4π)4h̄mµ

∫ p2+p4

p2−p4

dp3

∫
dp2

∫
d3p4

〈
|A|2

〉
|p4|2

δ(mµc− p2 − p3 − p4)

=
1

(4π)4h̄mµ

∫
dp2

∫
d3p4

〈
|A|2

〉
|p4|2

(170)

if p2−p4 < mµc−p2−p4 < p2 +p4. This condition means that p2, p3, and p4 must each be less than
mµc/2. By conservation of energy, the three final particles share the energy mµc

2 released by the
decay of the muon. Because the final particles are relativistic, the three-momentum of each particle
is directly proportional to its share in that energy, pi = Ei/c, so the total momentum available to
all three particles is mµc. By conservation of momentum in the rest frame of the initial muon, no
final particle can receive more than half of that total momentum, since there must always be an
equal amount of final momentum going in the opposite direction.
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Inserting Eq. (164) for
〈
|A|2

〉
into Eq. (170) for Γ, one finds

Γ =

(
gW

4πmW

)4 mµ

h̄c2

∫
d3p4

p2
4

∫ 1
2
mµc

1
2
mµc−p4

dp2p2 (mµc− 2p2)

=

(
gW

4πmW

)4 mµ

h̄c2

∫
d3p4

(
1

2
mµc−

2

3
p4

)

=

(
gW

4πmW

)4 mµ

h̄c2

∫ 1
2
mµc

0
dp44πp2

4

(
1

2
mµc−

2

3
p4

)
=

(
gW
mW

)4 m5
µc

2

12(8π)3h̄
(171)

Using the values gW ≈ 0.66 and mW ≈ 82 GeV/c2, the correct lifetime of the muon is obtained:

τ =
1

Γ
= 2.2 · 10−6 sec (172)

3.2.2 Beta Decay of an Isolated Neutron

An isolated neutron is slightly unstable and will decay into a proton, electron, and electron anti-
neutrino. This is called beta decay since an electron (beta particle in nuclear physics parlance) is
emitted. In some cases, β decay can also happen to a neutron in a nucleus, as will be described in
the next section. The Feynman diagram for the decay of an isolated neutron is shown in Fig. 15(b).
Because this diagram is so similar to that for muon decay, the squared amplitude for neutron decay
is simply a modified form of Eqs. (164) and (166) for muon decay:〈

|A|2
〉

= 2ffudge cos2 θc

(
gW
mW c

)4

(p1 · p2)(p3 · p4)

= ffudge cos2 θc

(
gW
mW c

)4

mnE2

[(
m2
n −m2

p −m2
e

)
c2 − 2mnE2

]
(173)

In contrast to the muon and muon neutrino in Fig. 15(a), the neutron and proton in Fig. 15(b) are
composite particles; the W interacts with only one of the quarks in that composite. The cos2 θc in
Eq. (173) comes from that quark-W vertex. We know the momentum p1 of the neutron and p2 of
the neutron, but we don’t know how much of that momentum belongs to the appropriate quark or
how much the other quarks perturb the interaction. Therefore we simply use p1 and p2 and include
a fudge factor ffudge that we expect to be on the order of 1. Unlike with muon decay, me cannot
be neglected here because it represents a substantial fraction of the released energy.

The decay rate may be found from Eqs. (30) and (173) with δ4(
∑
p) = δ(

∑
E/c)δ(

∑
p), E1 =

mnc
2, p1 = 0, E2 ≈ |p2| c, E3 = c

√
|p3|2 +m2

pc
2, and E4 = c

√
|p4|2 +m2

ec
2:

Γ =
c3

16(2π)5h̄mn

∫
d3p2

∫
d3p3

∫
d3p4

〈
|A|2

〉
E2E3E4

δ

(
mnc−

E2

c
− E3

c
− E4

c

)
δ3(p2 + p3 + p4)

=
c3

16(2π)5h̄mn

∫
d3p2

∫
d3p4

〈
|A|2

〉
E2E3E4

δ

(
mnc−

E2

c
− E3

c
− E4

c

)
, (174)

where now |p3| = |p2 + p4|.
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One can rewrite the variable of integration d3p2 using E3 and the angle θ between p2 and p4:

E3 = c
√
p2

2 + p2
4 + 2p2p4 cos θ +m2

pc
2 → dE3 = −cE2p4 sin θdθ

E3
with p2 & p4 held fixed

=⇒ d3p2 = 2π sin θ dθ |p2|2 dp2 =
−2πE2dE2E3dE3

c4 |p4|
(175)

with the constraint E3− < E3 < E3+ , E3± ≡ c
√
p2

2 + p2
4 ± 2p2p4 +m2

pc
2 (176)

Thus the decay rate is

Γ =
1

(4π)4h̄cmn

∫ E3+

E3−

dE3

∫
dE2

∫
d3p4

〈
|A|2

〉
E4 |p4|

δ(mnc−
E2

c
− E3

c
− E4

c
)

=
1

(4π)4h̄cmn

∫
dE2

∫
d3p4

〈
|A|2

〉
E4 |p4|

(177)

if E3− < mnc−E2/c−E4/c < E3+ . As with muon decay, this condition simply reflects how much
of the total energy and momentum each final particle can get without violating conservation of
energy and momentum. Using Eq. (176), this condition may be rewritten in terms of E2:

E2− < E2 < E2+ , E2± ≡
1
2(m2

n −m2
p +m2

e)c
4 −mnc

2E4

mnc2 − E4 ∓ |p4| c
(178)

Inserting Eq. (173) for
〈
|A|2

〉
into Eq. (177) for Γ and using Eq. (178), one finds

Γ =
ffudge cos2 θc

h̄c

(
gW

4πmW c

)4 ∫ d3p4

E4 |p4|

∫ E2+

E2−

dE2

[
(m2

n −m2
p −m2

e)c
2E2 − 2mnE

2
2

]
=

ffudge cos2 θc
h̄c

(
gW

4πmW c

)4 ∫ d3p4

E4 |p4|

[
(m2

n −m2
p −m2

e)
c2

2

(
E2

2+
− E2

2−

)
− 2mn

3

(
E3

2+
− E3

2−

)]

≈ ffudge cos2 θc
h̄c

(
gW

4πmW c

)4 ∫ d3p4

E4 |p4|
4

c2
E4

√
E2

4 −m2
ec

4[(mn −mp)c
2 − E4]2 (179)

Using d3p4 = 4π |p4|E4dE4/c
2, one obtains the spectrum of electron energies emitted in β decay,

dΓ

dE4
=

ffudge cos2 θc
π3h̄

(
gW

2mW c
2

)4

E4

√
E2

4 −m2
ec

4[(mn −mp)c
2 − E4]2 (180)

As would be expected, the electron energy ranges from just the electron’s rest energy mec
2 to the

full energy release (mn −mp)c
2, with a peak in between those two extremes.

Defining a ≡ (mn −mp)/me and doing the integral over E4, the total decay rate is

Γ =
ffudge cos2 θc

4π3h̄

(
gW

2mW c
2

)4

(mec
2)5
[

1

15
(2a4 − 9a2 − 8)

√
a2 − 1 + a ln(a+

√
a2 − 1)

]
(181)

Using the usual numbers gW ≈ 0.66 and mW ≈ 82 GeV/c2, a fudge factor of ffudge ≈ 1.54 gives the
correct lifetime of an isolated neutron,

τ =
1

Γ
≈ 15 min (182)

Although this decay process is very similar to muon decay, it is many orders of magnitude slower.
The reason is that decays generally proceed much more quickly when there is more energy to be
released in the process. From Eqs. (171) and (181), weak-interaction-mediated decay rates vary
like Γ ∼ (∆m)5, where ∆m is the amount of initial particle mass that is converted to energy. For
muon decay, this mass converted to energy is almost the entire mass of the muon, ∆m ∼ mµ, while
for neutron decay it is much smaller, ∆m ≈ mn −mp −me ∼ me.
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3.2.3 Beta Decay within a Nucleus

The results from the previous section for beta decay of an isolated neutron may be extended to
beta decay of a neutron (or even a proton) within a nucleus. The weak force coupling constant is
more complicated than assumed above. It includes a Cabibbo factor cos θc ≈ 0.974 and separate
coefficients for two types of coupling: vector (cV ≈ 1) and axial (cA ≈ 1.26). The variation
of the decay rate with the emitted electron energy, dΓ/dEe, is important because it gives the
energy spectrum of the beta particles [Fig 16(e)]. The dΓ/dEe expression for decay of an isolated
neutron can be extended to beta decay of a nucleon within a nucleus by including fudge factors, the
Fermi amplitude AF to modify vector coupling (beta particle and neutrino emitted with spins
antiparallel) and the Gamow-Teller amplitude AGT to modify axial coupling (beta and neutrino
emitted with spins parallel):

dΓ

dEe
=

cos2 θc
(4π)3h̄

(
gw
mwc2

)4 (
c2
V |AF |

2 + c2
A |AGT |

2
)
F (Z ′, Ee)Ee

√
E2
e −m2

ec
4
(
∆E +mec

2 − Ee
)2

(183)

Equation (183) applies to either electrons or positrons emitted in beta decay. It reduces to the
expression for isolated neutron decay for |AF |2 = 1, |AGT |2 = 3, and ∆E = (mn −mp −me)c

2.

The function F (Z ′, Ee) in Eq. (183) accounts for the effect of the final nuclear charge Z ′ on the
probability of the emitted electron appearing at the nucleus (r = 0):

F (Z ′, Ee) =

∣∣∣∣ ψe(Z
′, r = 0)

ψe(Z ′ = 0, r = 0)

∣∣∣∣2 ≈ Z′e2

2εoh̄v∣∣∣1− exp
(
∓ Z′e2

2εoh̄v

)∣∣∣ (184)

where the approximate answer is a nonrelativistic result given by other authors; the relativistic
result is much nastier [Emilio Segrè, Nuclei and Particles (2nd ed., Benjamin Cummings, Reading,
MA, 1977); John M. Blatt and Victor F. Weisskopf, Theoretical Nuclear Physics (Dover, New
York, 1952); Amos deShalit and Herman Feshbach, Theoretical Nuclear Physics Volume I: Nuclear
Structure (Wiley, New York, 1974)]. The ∓ sign is negative for electrons and positive for positrons.
In the limit of low energies or emission velocities v → 0, Eq. (184) becomes

F (Z ′, Ee) ≈


Z′e2

2εoh̄v
for electrons

Z′e2

2εoh̄v
exp

(
− Z′e2

2εoh̄v

)
for positrons

(185)

The Coulomb field of the nucleus is attractive for escaping electrons and steals energy from them,
or equivalently enhances electron emission at low energies, as shown by Eq. (185). In contrast,
the field is repulsive for positrons and accelerates them, or suppresses positron emission at low
energies. By analogy with alpha decay [Nuclear Physics 2.1], Eq. (185) can also be viewed as a
Gamow tunneling factor for positrons escaping from the nucleus.

The essence of Eq. (183) integrated over all energies is defined as the Fermi integral f(Z ′,∆E):

(
mec

2
)5
f(Z ′,∆E) ≡

∫ ∆E

mec2
dEe F (Z ′, Ee)Ee

√
E2
e −m2

ec
4
(
∆E +mec

2 − Ee
)2

(186)
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The factor (mec
2)5 gives the correct units for the energy factors. For Z ′ = 0, the integral can be

evaluated analytically, defining ε ≡ ∆E/mec
2:

f(Z ′ = 0,∆E) =
√
ε2 − 1

(
1

30
ε4 − 3

20
ε2 − 2

15

)
+

1

4
ε ln

(
ε+

√
ε2 − 1

)
(187)

≈

 0.2155
(

∆E
mec2

− 1
)7/2

for ∆E −mec
2 � mec

2

1
30

(
∆E
mec2

)5
for ∆E � mec

2
(188)

Coulomb effects (Z ′ 6= 0) necessitate numerical evaluation of f(Z ′,∆E) [Nuclear Physics 2.2].

However, they generally multiply f(0,∆E) by ∼ exp
(

2πZ′

137
c
v

)
for electron emission and ∼ 0.1− 0.3

for positron emission with large Z ′.

Using the Fermi integral, the total beta decay rate is

Γ =
cos2 θc
(4π)3

(
gw
mwc2

)4
(
mec

2
)5

h̄
f(Z ′,∆E)

(
c2
V |AF |

2 + c2
A |AGT |

2
)

(189)

=
G2
Fm

5
ec

4

2π3h̄7 f(Z ′,∆E)
(
c2
V |AF |

2 + c2
A |AGT |

2
)
, (190)

where by convention the Fermi coupling constant is defined as

GF ≡ cos2 θ

(
gw
mwc2

)2 (h̄c)3

4
√

2
≈ 8.7× 10−5 MeV · fm3 (191)

The half-life for beta decay is

τ1/2 =
ln 2

Γ
=

ln 2 2π3h̄7

G2
Fm

5
ec

4

1

f(Z ′,∆E)

1

c2
V |AF |

2 + c2
A |AGT |

2 (192)

The ft value is the half-life adjusted with the f(Z ′,∆E) dependence removed, so it is only a
function of the Fermi and Gamow-Teller amplitudes:

ft ≡ f(Z ′,∆E)τ1/2 =
ln 2 2π3h̄7

G2
Fm

5
ec

4

1

c2
V |AF |

2 + 3c2
A |AGT |

2 ≈
6140 sec

|AF |2 + 1.59 |AGT |2
(193)

See Nuclear Physics 2.2 for more information on applications to specific nuclear decays.
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3.3 Glashow-Weinberg-Salam (GWS) Electroweak Unified Theory

Weak and electromagnetic interactions may be unified into a single interaction Hamiltonian density
HInt = −LInt . HInt is initially expressed in terms of four uncharged, massive, spin-1 force mediators
(W 1, W 2, W 3, and B) and the particles to which they couple, and then combinations of these
terms are shown to represent the physically observed force mediators (W−, W+, Z0, and photon).

In Eqs. (75) and (77), the photons that mediate the electromagnetic force were shown to couple to
an electric current, and that electric current was defined to be an incoming and outgoing electrically
charged particle. More generally, a current (not necessarily electrical now) may be defined as
consisting of incoming and outgoing particles that couple to some force-mediating particle at a
vertex. For example, in Fig. 13(a) the incoming lepton and outgoing neutrino form a weak force
current that couples to the W− weak force particle. We will now consider a theory in which three
force mediators W i (i = 1, 2, or 3) are coupled to corresponding currents ji with the weak-force
coupling constant gW and a fourth force-mediating particle B is coupled to a different current jY

with its own coupling constant g′. This may be represented by the interaction Hamiltonian density

HInt = gW

3∑
i=1

(ji)µ(W i)µ +
g′

2
(jY )µB

µ

=
gW√

2
(j−)µ(W−)µ +

gW√
2

(j+)µ(W+)µ︸ ︷︷ ︸
HInt, charged

+ gW (j3)µ(W 3)µ +
g′

2
(jY )µB

µ︸ ︷︷ ︸
HInt, uncharged

(194)

where the complex combinations (W±)µ ≡ (W 1∓ iW 2)µ/
√

2 and j±µ ≡ j1
µ± ij2

µ are used to express
interactions involving the charged W± in the part HInt, charged. Note that in this section only, all
of the Hamiltonians have been implicitly multiplied by

√
4π/(h̄c) so that we can work in terms of

the g coupling constants instead of quantities like charge.

The currents are defined as

(ji)µ =
1

4
(νe e) γµ (1− γ5) σi

(
νe
e

)
+ similar terms for other leptons & quarks (195)

The matrices σi are the same as the three 2× 2 Pauli spin matrices from Eq. (58). Here they mix
the νe and e states at interaction vertices the same way they mix spin-up and spin-down states in
quantum interactions of a spin-1

2 particle.

In accordance with the + and − states, one can define

σ± ≡ 1

2

(
σ1 ± iσ2

)
=⇒ σ+ =

(
0 1
0 0

)
σ− =

(
0 0
1 0

)
(196)

The charged currents are then

(j±)µ =
1

2
(νe e) γµ (1− γ5) σ±

(
νe
e

)
+ similar terms for other particles (197)

The charged interaction Hamiltonian may be further rewritten as

HInt, charged =
gW
2
√

2
[νeγµ(1− γ5)e(W−)µ︸ ︷︷ ︸
vertex in Fig. 10(a)

+ eγµ(1− γ5)νe(W
+)µ︸ ︷︷ ︸

vertex in Fig. 10(a) with all arrows reversed

] +
similar terms for other

leptons and quarks
(198)
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HInt, uncharged represents interactions involving the remaining two uncharged mediators, the B and
W 3. As shown in Fig. 14(b), these particle states may be represented as orthogonal axes, and
mixing the two particle states by rotating the axes by the weak mixing angle θW produces the two
particle states that are actually observed in nature, the photon (field Aµ) and a boson called the
Z0. Although the circumstances are different, this basic idea is similar to the earlier rotation of
down and strange quark states by the Cabibbo angle. Whereas the W± bosons mediate charged
weak interactions, the Z0 mediates neutral weak interactions, as will be discussed in a moment.

HInt, uncharged may be rewritten in terms of the observed photon and Z0 particle fields:

HInt, uncharged =

(
gW sin θW j

3
µ +

g′

2
cos θW j

Y
µ

)
Aµ︸ ︷︷ ︸

HInt, EM

+

(
gW cos θW j

3
µ −

g′

2
sin θW j

Y
µ

)
Zµ︸ ︷︷ ︸

HInt, Z

(199)

The electromagnetic term is simply HInt, EM = gej
EM
µ Aµ, so defining

j3
µ + jYµ /2 ≡ jEMµ (200)

yields the relation between the coupling constants,

ge = gW sin θW = g′ cos θW . (201)

If the W 3 particle were observed, it should have the same mass as its cousins, the W− and W+.
Since Fig. 14(b) shows that

(W 3)µ = Zµ cos θW +Aµ sin θW , (202)

the masses of these particles are related by

mW = mZ cos θW +m
photon

sin θW = mZ cos θW . (203)

Using the experimental mass values mW = 81.8 GeV/c2 and mZ = 92.6 GeV/c2 in Eq. (203)
indicates that θW ≈ 28.7o. This same value for θW may be obtained by using the coupling constants
ge ≈ 0.3 and gW ≈ 0.66 in Eq. (201).

By using Eqs. (200) and (201), HInt, Z may be expressed in terms of a Z0 coupling constant gZ ,

HInt, Z = gZ

(
j3
µ − sin2 θW j

EM
µ

)
Zµ gZ ≡

ge
sin θW cos θW

. (204)

Explicitly writing out the currents and defining qx to be the charge of particle x, HInt, Z is

HInt, Z = gZ

[
1

4
νeγµ(1− γ5)νe −

1

4
eγµ(1− γ5)e− sin2 θW

qν
|e|
νeγµνe − sin2 θW

qe
|e|
eγµe

]
Zµ

+ similar terms for other leptons and quarks

=
∑

fermions f

gZ
2
fγµ(cf

V
− cf

A
γ5)fZµ , (205)

where the vector cf
V

and axial cf
A

couplings for each fermion are defined in Table 4.

f cfv cf
A

Explanation

νe, νµ, ντ
1
2

1
2 qν = 0

e−, µ−, τ− −1
2 + 2 sin2 θw −1

2 qe = −1

u, c, t 1
2 −

4
3 sin2 θw

1
2 Like ν with q = 2

3 .

d, s, b −1
2 + 2

3 sin2 θw −1
2 Like e− with q = −1

3 .

Table 4. Vector cfv and axial cf
A

couplings for each fermion f interacting with the Z0.
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Equation (205) describes the interaction vertex shown in Fig. 16(a). The corresponding vertex
factor for the Feynman rules is

−igZ
2
γµ(cf

V
− cf

A
γ5) (206)

The Z0 has the same propagator as the W±, Eq. (158), with the substitution mW → mZ . Whereas
the W± is important for decays even at low energies, the Z0 is really only important in some high
energy processes such as that shown in Fig. 16(b).

e-  

e+  

f f 

Z0  

Z0  

f 

f 

(a) (b) 

Figure 16. Interactions involving the Z0. f denotes any fermion. (a) The fundamental
interaction vertex. Note that the fermions entering and leaving the vertex are of the same type
(unlike with the W± vertex). (b) An example of a Z0 process is the reaction e− + e+ → other
fermions. Although this process can be mediated by either the Z0 or the photon, when the total
energy of the colliding particles is mZc

2, the reaction cross section has a telltale sharp resonance
due to the process in (b).

One could say that the electroweak theory is wimpy yet powerful. It combines the forces caused
by four different bosons (W−, W+, Z0, and photon) into a unified theory of, well, four different
bosons (albeit slightly different ones: W 1, W 2, W 3, and B). That doesn’t seem very impressive.
On the other hand, it makes many dramatic and experimentally verifiable predictions, such as the
ratios mW /mZ and gW /gZ , as well as the vector and axial couplings for each type of fermion in
neutral weak interactions.

In addition to the types of vertices already discussed, electroweak theory contains several three- or
four-line vertices that represent interactions just among the W±, Z0, and photon. For example,
the photon interacts with charged particles, and the W± are charged. Likewise, the W± and Z0

can interact with any particles that experience the weak force, including themselves, so there are
vertices in which multiple W± and/or Z0 particles interact. (The photon can also be involved in
those vertices if the W± is.) These vertices will not be discussed further here, since they are not
very important in most processes and take more time to discuss than they are worth. For more
information on them, see [5].

The nonzero masses of the W± and Z0 keep this electroweak theory from being renormalizable. To
circumvent this problem, theoretical physicists with too much time on their hands have invented
a new particle called the Higgs boson. The Higgs is an uncharged spin-0 particle so massive that
present particle accelerators do not have enough energy to create it. Because it is spin-0, the Higgs
boson is itself renormalizable, and through a complicated mechanism called spontaneous symmetry
breaking, the Higgs essentially lends mass to the W± and Z0 bosons. For more information, see
[3,5].
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4 Strong Nuclear Force: Quantum Chromodynamics
Quantum chromodynamics (QCD) describes the strong nuclear force that binds quarks together to
form protons and neutrons, and binds protons and neutrons together to form the nuclei of atoms.
Strong force interactions are experienced by particles that have strong force charge, which is called
color (not related to actual optical colors). The only particles with color are gluons, which actually
mediate the strong force, and quarks. Mesons such as pions are combinations of a quark and an
antiquark, and baryons such as protons and neutrons are combinations of three quarks. Although
QCD describes effects occuring in mesons, baryons, and nuclei, only a few useful QCD calculations
of these effects can be made at this point because of mathematical complexities.

4.1 Quantum Chromodynamics (QCD) Theory

The basic QCD interaction vertex is shown in Fig. 17(a). An incoming quark with color #1 (red,
blue, or green) emits a gluon and turns into an outgoing quark with color #2. Color is conserved,
so the gluon must carry two units of color–one unit of color #1 and one unit of anti-color #2.
Although the quark can change colors, it must keep the same flavor (d, u, s, c, b, t). As always,
particles going one way may be interpreted as antiparticles going the other way. For instance, the
same vertex could represent the absorption of a gluon with anti-color #1 and color #2.

Gluon  Gluon  

Gluon  Gluon  

Gluon  

Gluon  

Gluon  
Emitted gluon 
(color #1 and 
anticolor #2) 

(a) (b) (c) 
Quark 

(some flavor, 
color #1) 

Quark 
(same flavor, 

color #2) 

Figure 17. QCD interaction vertices for quarks (straight lines) and gluons (coiled
lines). Color can be one of three possible charges, designated red, green, and blue. (a) By
emitting (or absorbing) a gluon, a quark of color #1 can change to color #2. The gluon must
carry the difference in color. Note that the quark flavor (d, u, s, c, b, or t) cannot change during
this interaction. (b) & (c) Since gluons carry color and interact with colored particles, they can
interact with themselves in three- and four-gluon vertices.

Quark color is specified by a column matrix c (or row matrix c†, its transposed complex conjugate):

c =

 1
0
0

 for red c =

 0
1
0

 for blue c =

 0
0
1

 for green (207)

Thus for external quark or antiquark lines, one modifies QED rules and writes factors of

u c for incoming quarks v c for outgoing antiquarks

u c† for outgoing quarks v c† for incoming antiquarks (208)
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The vertex factor for vertices like Fig. 17(a) is also modified from QED:

− igs
2
λαγµ , where λα ≡

 λαrr λαrb λαrg
λαbr λαbb λαbg
λαgr λαgb λαgg

 (209)

Not including the factor of 1/2 in the strong force coupling constant gs is merely a convention.
The Gell-Mann matrix λα changes the quark color c from its incoming to its outgoing value in
accordance with the gluon type. There are eight Gell-Mann matrices

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0

 λ4 =

 0 0 1
0 0 0
1 0 0

 (210)

λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0

 λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


corresponding to the eight different gluons in nature. For example, λ1 corresponds to a gluon with
color state (rb + br)/

√
2. Note that by convention, a common normalization factor of 1/

√
2 has

been omitted from the definitions of all the Gell-Mann matrices. It would be simpler if nature had
chosen simpler gluon states, such as rr, rb, etc., but it perversely chose the above states.

The propagator for virtual quarks or antiquarks of mass m is just the QED fermion propagator.
The gluon propagator is the same as the QED photon propagator, but with an added delta function
δαβ to ensure that the gluon type is the same at the two vertices connected by the virtual gluon:

i(6 p+mc)

p2 −m2c2
quark propagator

−igµνδαβ

p2
gluon propagator (211)

The simple Feynman rules presented here are sufficient to calculate effects that will be considered
in this section, such as those in Fig. 18(a) and (b). More advanced calculations require additional
QCD Feynman rules that will not be described in detail here. Briefly, if external gluon lines existed,
they would introduce the same polarization and momentum factor as external photon lines in QED,
except the gluon type (1-8) would also need to be noted. Moreover, since gluons have color, they
can couple to themselves (unlike photons in QED, which have no electric charge and thus do not
couple to themselves). This leads to three- and four-gluon vertices, shown in Fig. 17(b) and (c), and
the corresponding vertex factors are mathematically complex and difficult to work with. Likewise,
loops in QCD Feynman diagrams require additional calculational techniques called Fadeev-Popov
ghosts that will not be discussed here. For more information on advanced QCD rules, see [1,3,6].
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(a) (b) 

p0 

p1 p3 

p4 p2 

p0 

p1 p3 

p2 p4 

Figure 18. Simplest Feynman diagrams for strong nuclear force between quarks and
antiquarks. (a) The strong force between a quark and an antiquark (such as those in a meson)
due to the exchange of a single gluon. (b) The force between two quarks (such as those in a baryon)
due to single-gluon exchange.
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Figure 19. More complicated QCD Feynman diagrams. (a) Gluon loops can appear in dia-
grams. The net effect of the loops is to increase the effective coupling constant at low energies/long
distances and decrease it at high energies/short distances. (b) Gluon-mediated interactions be-
tween quarks lead to effective meson-mediated interactions between baryons. In this case, two
protons exchange a neutral pion. Many similar diagrams contribute to observed strong interactions
between baryons.
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As in QED, the QCD coupling constant can be renormalized so that the factor gs in lowest-order
Feynman diagrams also implicitly includes the effects of higher order diagrams involving loops of
quarks or gluons, such as those shown in Fig. 19(a). This is called a running coupling constant,
since it is no longer constant but actually depends on the energy (or equivalently the distance scale)
at which the interaction takes place. Two general regimes may be distinguished:

• At high energies (> 300 MeV) or at short distances (<0.7 fm), the renormalized coupling
constant is small, gs � 1. This means that perturbation theory is valid in this regime. Since
the quarks within a baryon or meson are separated by a distance on this scale, they don’t
interact much with each other, a phenomenon which is called asymptotic freedom.

• At lower energies (< 300 MeV) or at longer distances (> 0.7 fm), the renormalized coupling
constant increases until it is gs > 1. Therefore, perturbation theory is not valid in this
regime, since the series in Eq. (17) does not converge. Because the strong force increases
with distance, one cannot pull out a free quark; the energy required to remove one quark from
a meson or baryon would be sufficient to create new quark partners. The fact that quarks
are only found bound up inside mesons and baryons is called confinement.

Although free quarks cannot be pulled out of composite particles like baryons, high-energy scat-
tering of electrons off baryons demonstrates that the baryons have an internal structure of three
point-like, electrically charged quarks (often called by the older name of partons in this context).

The three color labels have simply been assigned, so they could be arbitrarily interchanged or even
redefined as linear combinations of the r, b, and g states. Therefore, an important rule in QCD is
that all observed particles must be in colorless (zero net color) states that are invariant under such
redefinitions. In fact, as will be shown in Section 4.2, quarks must be in a color-invariant state in
order to attract instead of repel each other so that they can form a bound state. This means that
mesons and baryons are in the following color-invariant states:

1√
3
(rr + bb+ gg) meson color state (212)

1√
6
(rgb+ gbr + brg − rbg − grb− bgr) baryon color state (213)

These states are antisymmetric under the interchange of any two fermions (or symmetric under
interchange of a fermion and an antifermion). The only colorless quark combinations are mesons
(color-anticolor pairs), baryons (three different colors), anti-baryons (three different anti-colors),
and groups of those particles. For example, there are no particles composed of two quarks.

Because mesons and baryons have no net color, gluons do not act between them over physically
observable distances. Thus gluons are confined within mesons and baryons just as quarks are.

Since there are three colors of quarks, the Pauli exclusion principle is satisfied even in baryons such
as uuu with all of the quark spins in the same direction–each quark is a different color and hence
still in a different state.

The masses of u and d can be estimated from the Heisenberg uncertainty principle, (∆p)(∆x) ∼ h̄.
If the quarks are confined within a baryon or meson of radius R then ∆x ∼ R. Furthermore, if the
rest mass of the quarks can be neglected in comparison with the effective mass acquired from their
relativistic kinetic energy, then meffective ≡ E/c2 ∼ ∆p/c. Therefore, one finds

meffective ≈
ah̄

Rc
, (214)
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in which a is a constant on the order of 1. For the measured proton radius R ≈ 1.5× 10−15 m, one
obtains the correct quark mass if a ≈ 2.7:

mu ≈ md ≈ 360 MeV/c2 in baryons (215)

Mesons have a somewhat larger radius and thus u and d quarks have slightly smaller effective
masses in mesons than in baryons.

4.2 Examples

Very few calculations can currently be done with QCD because of complexities associated with the
QCD rules, many-body interactions (e.g. 6 quarks and several gluons in 2 interacting nucleons),
and the coupling constant becoming too large at longer distances. However, this section will present
a few insightful results for mesons and baryons that can be obtained without too much difficulty.
In fact, some results arise simply from the requirements on quark wavefunctions, without even
involving the QCD Feynman rules for interactions.

4.2.1 Meson Types and Masses

Since mesons are composed of a quark and an antiquark, each of which can be any of the 6 flavors
u, d, s, c, b, and t, there are 6× 6 = 36 possible mesons of a given spin. Mesons composed of the
three lightest quarks are easiest to create, and Table 4 catalogs these 9 (= 3× 3) light mesons.

The spin of a meson is 0 if its quark and antiquark spins are antiparallel and 1 if they are parallel.
In the ground state, the angular momentum of the quark and antiquark orbiting around each other
is zero, just as it is for a ground state (s orbital) electron orbiting in a hydrogen atom. Excited
meson states with a nonzero orbital angular momentum that contributes to the total meson spin
can occur but will not be considered here.

Spin 0 Spin 1

Quarks Charge Meson Mass Lifetime Meson Mass Lifetime
(MeV/c2) (sec) (MeV/c2) (sec)

ud, du ±1 π± 139.6 2.6× 10−8 ρ± 770 4× 10−24

(uu− dd)/
√

2 0 π0 135.0 8.7× 10−17 ρ0 770 4× 10−24

us, su ±1 K± 493.7 1.2× 10−8 K∗± 892 1× 10−23

ds, sd 0 K0, K
∗0

497.7 K∗0 892 1× 10−23

(uu+ dd− 2ss)/
√

6 0 η 548.8 7× 10−19

(uu+ dd+ ss)/
√

3 0 η′ 957.6 3× 10−21

(uu+ dd)/
√

2 0 ω 783 7× 10−23

ss 0 φ 1020 2× 10−22

Table 4. Mesons composed of only the three lightest quarks. Note that linear combinations
of uu, dd, and ss can form three uniquely different particles of a given spin, and that different linear
combinations occur for spin-0 and spin-1.
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Spin-spin interactions between the quark and antiquark have a large effect on meson masses, which
can be accounted for by using the formula

mmeson = m1 +m2 +Ameson
S1 · S2

m1m2
, (216)

where m1 and m2 are the masses of the quark and antiquark, S1 and S2 are their spins, and Ameson

is a constant. The product S1 · S2 is calculated in the same weird way as it is in the nonrelativistic
quantum physics of atomic electron spins:

J2 = (S1 + S2)2 = S2
1 + S2

2 + 2S1 · S2

=⇒ S1 · S2 =
1

2

[
J2 − S2

1 − S2
2

]
=

h̄2

2
[j(j + 1)− s1(s1 + 1)− s2(s2 + 1)]

=

{
−3

4 h̄
2 for j = 0

+1
4 h̄

2 for j = 1
(217)

Choosing the magnitude of the spin-spin interactions as Ameson = 4(mu/h̄)2160 MeV/c2 yields a
meson mass formula with a good fit to the experimental mass values in Table 4:

mmeson = m1 +m2 + 160
MeV

c2

m2
u

m1m2
×
{
−3 for j = 0
+1 for j = 1

(218)

4.2.2 Meson Binding Potential

The binding potential between a quark and an antiquark in a meson is mediated by the exchange
of a gluon, as shown in Fig. 18(a). Using the QCD Feynman rules, the corresponding amplitude is

A = i[u(3)c†3]

[
−igs

2
λαγµ

]
[u(1)c1]

[
−igµνδαβ

p2
0

]
[v(2)c†2]

[
−igs

2
λβγν

]
[v(4)c4]

= −
[

1

4

(
c†3λ

αc1

) (
c†2λ

αc4

)]
︸ ︷︷ ︸

color factor f= 1
4
λαc1c3λ

α
c4c2

g2
s

(p1 − p3)2
[u(3)γµu(1)] [v(2)γµv(4)] (219)

The row and column vector c1 through c4 simply pick out entries in the rows and columns of the
corresponding colors in the λ matrices. Summation over the repeated α index is implied.

The amplitude in Eq. (219) is exactly like that for the QED interaction between opposite charges,
except for the additional color factor f and the substitution of the strong coupling constant gs for
the electromagnetic coupling ge. Therefore, the QCD potential between a quark and an antiquark
looks like the QED potential with appropriate modifications:

Vqq(r) = −f g
2
s h̄c

4πr
(220)

Using the color-invariant state from Eq. (212) for the initial and final meson color states, one finds:

〈c3c4|c1c2〉 =
1√
3

〈
rr + bb+ gg

∣∣∣ 1√
3

∣∣∣rr + bb+ gg
〉

=
1

3

(
〈rr|rr〉+

〈
rr|bb

〉
+ 〈rr|gg〉+ similar terms with

〈
bb
∣∣∣ and 〈gg|

)
(221)
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The color factor is the sum of the terms corresponding to Eq. (221):

f =
1

4

1

3

(
λαrrλ

α
rr + λαrbλ

α
br + λαrgλ

α
gr + similar terms from

〈
bb
∣∣∣+ similar terms from 〈gg|

)
=

1

4

(
λαrrλ

α
rr + λαrbλ

α
br + λαrgλ

α
gr

)
(222)

The factor of 1/3 cancelled the two other sets of similar terms in Eq. (222). For each term, only
two λ matrices yield nonzero results, so by looking over Eq. (210), the sums over the λ matrices
are

f =
1

4

[(
1 · 1 +

1√
3
· 1√

3

)
+ (1 · 1− i · i) + (1 · 1− i · i)

]
=

4

3
(223)

For comparison, one could consider a meson in a non-color-invariant state like the gluon states in
Eq. (210). For example, using the color state corresponding to λ1, (rb+ br)

√
2, for the initial and

final meson color states, one finds:

〈c3c4|c1c2〉 =
1√
2

〈
rb+ br

∣∣∣ 1√
2

∣∣∣rb+ br
〉

=
1

2

(〈
rb|rb

〉
+
〈
rb|br

〉
+
〈
br|rb

〉
+ 〈br|br〉

)
(224)

As before, the color factor is the sum of the terms corresponding to Eq. (224):

f =
1

4

1

2
(λαrrλ

α
bb + λαrbλ

α
rb + λαbrλ

α
br + λαbbλ

α
rr)

=
1

4

1

2

[(
−1·1 +

1√
3
· 1√

3

)
+
(
12 + (−i)2

)
+
(
12 + i2

)
+

(
−1·1 +

1√
3
· 1√

3

)]
= −1

6
(225)

The same result would be obtained for any of the other non-color-invariant states. Putting the color
factors from Eqs. (223) and (225) into Eq. (220), one finds the quark-antiquark binding potentials
in a meson in different color states:

Vqq(r) = −4

3

g2
s h̄c

4πr
for color-invariant state Vqq(r) = +

1

6

g2
s h̄c

4πr
for other states (226)

Thus the potential between the quark and antiquark in a meson is attractive if the particles are
in the color-invariant state and repulsive if they are in a non-color-invariant state. This helps to
explain why mesons are always in the color-invariant state.

Although the strong force is actually caused by quarks exchanging gluons, confinement of the quarks
and gluons within mesons and baryons makes it effectively appear as if the strong force is caused by
baryons exchanging mesons. For example, Fig. 19(b) shows two protons exchanging a neutral pion,
and this Feynman diagram reveals all of the composite quark and gluon interactions involved in
that process. There are actually several Feynman diagrams that could contribute to pion-mediated
proton interactions. At closer distances, exchanges of multiple pions or of mesons of larger mass
also become important.

The strong nuclear force among protons and neutrons is what holds the nucleus of an atom to-
gether despite the electrostatic repulsion among the protons. Because the mesons mediating this
strong interaction have mass, the resulting interaction among protons and neutrons is a short-range
Yukawa potential like Eq. (9) that can only overcome the electrostatic repulsion among protons at
very short distances (∼ 1− 2 fm).
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4.2.3 Baryon Types and Masses

Baryons are composed of three quarks, and each quark can be any of the six flavors u, d, s, c, b,
and t. Thus there are a large number of possible baryons. In practice, only baryons composed of
the three lightest quarks can be easily studied in experiments:

Spin 1/2 Spin 3/2

Quarks Charge Baryon Mass Lifetime Baryon Mass Lifetime
(MeV/c2) (sec) (MeV/c2) (sec)

uuu +2 − ∆++ 1232 6× 10−24

uud +1 p 938.3 ∞ ∆+ 1232 6× 10−24

udd 0 n 939.6 900 ∆0 1232 6× 10−24

ddd −1 − ∆− 1232 6× 10−24

uus +1 Σ+ 1190 Σ∗+ 1385 2× 10−23

uds 0 Σ0 1190 Σ∗0 1385 2× 10−23

dds −1 Σ− 1190 Σ∗− 1385 2× 10−23

uds 0 Λ 1116

uss, dss 0, −1 Ξ0, Ξ− 1320 2× 10−10 Ξ∗0, Ξ∗− 1533 7× 10−23

sss −1 − Ω− 1672 8× 10−11

Table 5. Baryons composed of only the three lightest quarks.

Including flavor, spin, color, and space, the wavefunction for the quarks in a baryon must be
antisymmetric under interchange of any two quarks. The baryon color state in Eq. (213) is
antisymmetric, so the remaining parts of the wavefunction multiplied together must be symmetric.
Therefore, baryons with symmetric, identical flavor states (e.g., uuu, ddd, and sss) must have
symmetric, identical spin states (all pointing the same way, so total spin must be 3/2 and cannot
be 1/2). Because the quarks in uds are all different flavors, multiple wavefunctions with different
symmetry properties are possible, and hence there are two uds spin-1/2 baryons, Λ and Σ0.

Spin-spin interactions between quarks have a large effect on baryon masses as well as meson masses:

mbaryon = m1 +m2 +m3 +Abaryon

(
S1 · S2

m1m2
+

S2 · S3

m2m3
+

S1 · S3

m1m3

)
. (227)

The baryon’s three quarks have masses m1, m2, and m3 and spins S1, S2, and S3, and Abaryon is
a constant. When m1 = m2 = m3, the spin-spin interaction calculation may be simplified using

J2 = (S1 + S2 + S3)2 = S2
1 + S2

2 + S2
3 + 2(S1 · S2 + S2 · S3 + S1 · S3)

=⇒ S1 · S2 + S2 · S3 + S1 · S3 =
1

2

[
J2 − S2

1 − S2
2 − S3

]
=

h̄2

2
[j(j + 1)− s1(s1 + 1)− s2(s2 + 1)− s3(s3 + 1)]

=

{
−3

4 h̄
2 for j = 1

2
+3

4 h̄
2 for j = 3

2

(228)

Choosing the magnitude of the spin-spin interactions as Abaryon = 4(mu/h̄)250 MeV/c2 yields a
good fit to the experimental proton, neutron, and ∆ mass values in Table 5:

mbaryon = m1 +m2 +m3 +

 −150 m2
u

m1m2

MeV
c2 for j = 1

2

150 m2
u

m1m2

MeV
c2 for j = 3

2

(229)
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Masses of baryons whose component quarks have unequal masses can be calculated in similar but
more lengthy fashions, as shown in [1].

4.2.4 Baryon Binding Potential

The quarks in a baryon are bound together by the exchange of gluons. The amplitude of the
diagram in Fig. 18(b) for gluon exchange between any two of the quarks is

A = i[u(3)c†3]

[
−igs

2
λαγµ

]
[u(1)c1]

[
−igµνδαβ

p2
0

]
[u(4)c†4]

[
−igs

2
λβγν

]
[u(2)c2]

= −
[

1

4

(
c†3λ

αc1

) (
c†4λ

αc2

)]
︸ ︷︷ ︸

color factor f= 1
4
λαc1c3λ

α
c2c4

g2
s

(p1 − p3)2
[u(3)γµu(1)] [u(4)γµu(2)] (230)

This amplitude is the same as that for QED interactions between like charges, except for the
additional color factor f and the substitution of gs for ge. Thus by analogy, the QCD potential
between any two quarks in a baryon is

Vqq(r) = +f
g2
s h̄c

4πr
(231)

As with mesons, the binding potential within baryons can be calculated for color-invariant and
non-color invariant states. The color-invariant state for quarks in a baryon was given in Eq. (213).
Considering only the first two quarks and assuming they begin and end in that state, one finds

〈c3c4|c1c2〉 =
1√
6
〈rg − rb+ gb− gr + br − bg| 1√

6
|rg − rb+ gb− gr + br − bg〉

=
1

6
[(〈rg|rg〉− 〈rg|rb〉+ 〈rg|gb〉− 〈rg|gr〉+ 〈rg|br〉− 〈rg|bg〉) + 5 more sets of terms]

(232)

All 6 sets of terms yield the same results, so one may limit the calculation to the explicitly shown
set of terms and multiply by 6. The color factor is the sum of the corresponding terms:

f =
1

4

(
λαrrλ

α
gg − λαrrλαbg + λαgrλ

α
bg − λαgrλαrg + λαbrλ

α
rg − λαbrλαgg

)
= −2

3
(233)

Using (rb+ br)/
√

2 as a typical non-color-invariant initial and final quark state, one finds

〈c3c4|c1c2〉 =
1√
2
〈rb+ br| 1√

2
|rb+ br〉 =

1

2
(〈rb|rb〉+ 〈rb|br〉+ 〈br|rb〉+ 〈br|br〉) (234)

Thus the color factor for this state is

f =
1

4

1

2
(λαrrλ

α
bb + λαbrλ

α
rb + λαrbλ

α
br + λαbbλ

α
rr) = +

1

3
(235)

This result holds for other non-color-invariant states too. Using the color factors from Eqs. (233)
and (235) in Eq. (231), the binding potential between each pair of quarks in a baryon is

Vqq(r) = −2

3

g2
s h̄c

4πr
for color-invariant state Vqq(r) = +

1

3

g2
s h̄c

4πr
for other states (236)

As was the case with mesons, baryons must be in a color-invariant state in order for the potentials
between their component quarks to be attractive instead of repulsive.
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4.2.5 Baryon Magnetic Moments

Using quark wavefunctions, one can calculate the magnetic moments of baryons. The magnetic
moment of a Dirac spin-1/2 point particle of mass m and charge q (ignoring radiative corrections)
is µ = qh̄/(2mc) [cgs units]. Thus the magnetic moments of u and d quarks are

µu =
2

3

eh̄

2muc
µd = −1

3

eh̄

2mdc
(237)

The magnetic moment of a proton or neutron is simply the sum of the moments of its quarks
(subtracting spins of antiparallel quarks), since the quarks have no orbital angular momentum.

The flavor and spin state for the quarks in a spin-up proton is

|p↑〉 =
1√
18

(2 |u↑ u↑ d↓〉+ 2 |u↑ d↓ u↑〉+ 2 |d↓ u↑ u↑〉 − |u↑ u↓ d↑〉 − |u↑ d↑ u↓〉

− |d↑ u↑ u↓〉 − |u↓ u↑ d↑〉 − |u↓ d↑ u↑〉 − |d↑ u↓ u↑〉) (238)

This state is antisymmetric under simultaneous interchange of flavor and spin between any two
quarks. The terms with two identical permutations have coefficients of 2, and the normalization
factor 1/

√
18 is included since the sum of the squares of each term is 18.

The net number of spin-up u quarks averaged over all of the terms in Eq. (238) is

〈#u↑ −#u↓〉 =
∑

terms

(
coefficient with
normalization

)2

(#u↑ −#u↓ in each term) =
4

3
(239)

Likewise the net number of spin-up d quarks is 〈#d↑ −#d↓〉 = −1/3.

The magnetic moment of the proton is the sum of the magnetic moments of its constituent u and d
quarks, appropriately weighted for the net number of each quark type pointed in the same direction:

µp = 〈#u↑ −#u↓〉µu + 〈#d↑ −#d↓〉µd

=
4

3
µu −

1

3
µd =

8

9

eh̄

2muc
+

1

9

eh̄

2mdc

≈ eh̄

2muc
≈ 2.79

eh̄

2mpc
(240)

The last two approximations in Eq. (240) were made since mu ≈ md ≈ mp/2.79.

The neutron magnetic moment is found by simply interchanging u↔ d in the above calculation of
the proton magnetic moment, since neutrons have ddu and protons have uud quarks:

µn =
4

3
µd −

1

3
µu = −4

9

eh̄

2mdc
− 2

9

eh̄

2muc

≈ −2

3

eh̄

2muc
≈ −1.86

eh̄

2mpc
(241)

The results of Eqs. (240) and (241) are in good agreement with the experimental values of µp =
2.793 eh̄/(2mpc) and µn = −1.913 eh̄/(2mpc), especially considering the uncertainty in the quark
masses and the fact that radiative corrections were not included.
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5 Gravitational Force: General Relativity and Quantum Gravity
Like the other fundamental forces, gravitation can be described by a classical field (using general
relativity) or equivalently by interactions involving a force-mediating quantum particle (the gravi-
ton). The basic properties of the graviton can be defined, and it can be shown that Einstein’s
equation for the gravitational field in general relativity is equivalent to a quantum field theory of
interacting gravitons. Unfortunately, a full-fledged quantum theory of gravity has not yet been
developed, due to difficulties that will be explained briefly. Nonetheless, a few effects involving
both gravitation and quantum theory can be calculated, especially standard quantum effects that
are altered if they occur in a classically treated gravitational field.

If gravitational force is mediated by quantum particles, gravitons, one can deduce what the fun-
damental properties of these particles must be. First of all, gravitons must be massless; otherwise
gravitational potentials would look like the exponential Yukawa potential of Eq. (9) instead of
the familiar ∼ 1/r form. Moreover, gravitons must have spin 2. As discussed in Section 1.1.2,
force-mediating particles must have integer spin. Section 1 showed that spin-0 mediators lead to
simple scalar field expressions, while Section 2 showed that spin-1 mediators like the photon lead
to vector field equations such as electromagnetism. By extension, a spin-2 mediator would lead to
tensor field equations, which is exactly what general relativity involves. Higher spin numbers would
lead to even more complicated field equations and would not fit the observed behavior of gravity.

As discussed in Special and General Relativity 3, Einstein’s equation for the gravitational field is

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c2
Tµν Einstein’s equation (242)

in which the quantities describing gravitational curvature of spacetime are the Einstein tensor Gµν ,
Ricci tensor Rµν , and Ricci scalar R ≡ Rαβg

αβ. The gravitational fields are caused by the source
term Tµν , the stress-energy tensor describing any energy (or mass) or momentum that is present.

Einstein’s field equation may be derived from the Lagrangian density

L =
√

det(gµν)

(
− c4

16πG
+ L

everything except gravity

)
, (243)

where G ≈ 6.67 × 10−8 cm3

g sec2 is Newton’s gravitational constant and L
everything except gravity

is the

Lagrangian density for any particles or fields (except gravity) that are present.

The spacetime metric gµν may be separated into a constant background metric (here assumed to
be the Minkowski metric ηµν of flat spacetime) and a perturbation fµν ,

gµν = ηµν +

√
16πh̄

pp
fµν , with (244)

pp ≡

√
h̄c3

G
Planck momentum (245)

The weird constant in front of fµν in Eq. (244) ensures that fµν will have the right dimensions
to be a quantum field of massless spin-2 particles while keeping the corresponding perturbation to
the metric dimensionless (since the metric is dimensionless). In Relativity 3.4, these constants are
simply absorbed into the definition of the perturbation to create a dimensionless perturbation of
the metric, gµν = ηµν + hµν , where hµν ≡ (

√
16πh̄/pp)fµν .

The fundamental constants h̄, c, and G may be combined to yield a characteristic momentum pp (or
other quantity) at which quantum gravitational effects become important. For more information
on the definitions and physical meaning of this Planck scale, see Relativity 6.2.
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If the perturbation is small,

|hµν | ≡
∣∣∣∣∣
√

16πh̄

pp
fµν

∣∣∣∣∣ � 1 , (246)

one obtains linearized field equations as shown in Relativity 3.4.

Using Eq. (244), Eq. (243) may be rewritten to explicitly look like the Lagrangian of a massless
spin-2 field:

L = − c
2
fµν∂2fµν︸ ︷︷ ︸

massless
spin-2 field

+
c
√

16πh̄

pp
fµν

(
Tµν −

1

2
Tαβη

αβηµν

)
︸ ︷︷ ︸

interactions with
matter/energy (Tµν)

+ O
(
∂2

p2
p

f3

)
+O

(
∂3

p3
p

f4

)
+ ...︸ ︷︷ ︸

higher-order
(nonlinear) terms

(247)

The higher-order terms in Eq. (247) may be interpreted in terms of either fields or particles:

• Field interpretation. The energy in a gravitational field is proportional to the square of
the field’s amplitude (just as this is true for electric or magnetic fields). To account for the
coupling of the field to this energy of its own, a term of order f2 could be added to the
stress-energy tensor Tµν in Eq. (247). This would result in a term of total order f3 in the
Lagrangian (since Tµν gets multiplied by f), which is exactly what the first higher-order term
is. However, the Lagrangian (kinetic energy minus potential energy) is closely related to the
stress-energy tensor (components of energy and momentum), so the new O(f3) term in the
Lagrangian leads to a new O(f3) term in Tµν . This latest term gets multiplied by f in Eq.
(247), resulting in the next higher-order term O(f4) in the Lagrangian. This cycle continues,
generating higher and higher order terms in the Lagrangian.

• Particle interpretation. Gravitons couple to energy and gravitons carry energy, so they
must couple to themselves. The O(f3) term represents an interaction vertex with three gravi-
ton lines, for example a graviton entering and leaving the vertex and emitting or absorbing
a new graviton at the vertex. As long as the total energy entering and leaving the vertex
is conserved, there is no limit on how many gravitons can be emitted or absorbed in the
same process. Thus there are also vertices with four graviton lines [O(f4)], five graviton lines
[O(f5)], etc, as shown in Fig. 20(b). For the same reason, vertices coupling gravitons to other
particles may include any number of graviton lines, as illustrated in Fig. 20(c).

Because of all the tensor indices running around, the vertex factors and propagators for gravitons
contain many terms, each a nasty tensor expression involving different indices. This makes detailed
calculations in quantum gravity almost impossible, even with computers. Nonetheless, it is easy to
consider at least the qualitative form of the Feynman rules for quantum gravity:

1. The coupling constant or vertex factor in front of the three-graviton vertex in Eq. (247) is
O(∂2/p2

p) = O(p2/p2
p), where p is typical of the momenta entering or leaving the vertex.

2. Likewise, vertices with four or more graviton lines introduce factors of O(p3/p3
p) or higher.

3. Similarly, vertices coupling gravitons to other types of particles have factors of at least
O(p2/p2

p).

4. The propagator for internal (virtual) graviton lines is D = O(1/p2), just like the propagators
for other massless bosons such as spin-0 Klein-Gordon particles and spin-1 photons.

5. Integration over internal lines or loops introduces a factor of order
∫
d4p.
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Graviton  

Etc. 

Etc. 

Any other particle with mass or energy 
 (lepton, quark, photon, gluon, etc.) 

(a) 

(b) 

(c) 

Figure 20. Fundamental components of Feynman diagrams in quantum gravity. (a)
In this figure and Fig. 21, wavy lines represent gravitons and lines with arrows represent all other
types of particles that have mass or energy (even photons, gluons, etc.). (b) Gravitons couple to
particles that have mass or energy. There is no limit to how many gravitons may do this at a time,
so there are vertices involving one, two, three, or any other number of gravitons. (c) Gravitons
have energy, so they also couple to themselves. Again, there is no limit on the number of gravitons
that may be involved, so there are vertices with three, four, five, or more graviton lines.

These qualitative Feynman rules may be used to determine if quantum gravity can be renormalized.
For example, the graviton propagator must be modified to account for graviton loops, as shown in
Fig. 21. In Fig. 10 and Eq. (141), a similar case was considered for loops in virtual photon lines in
QED. By analogy with the QED case, a simple graviton propagator introduces a factor of D and
a graviton loop yields a factor of

Π = O

( p

pp

)2 (∫
d4p

1

p2

1

p2

)(
p

pp

)2
 = O

( p

pp

)4
 (248)
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+ + + … 

Figure 21. Graviton loop corrections to a virtual graviton line. The virtual graviton line is
assumed to be an internal line in some larger Feynman diagram in quantum gravity. Note that
loop diagrams involving other particles or vertices with more than three graviton lines are not
shown here.

Thus the sum over the graphs in Fig. 21 is∑
(graviton graphs) = D +DΠD +DΠDΠD + ...

= O
[

1

p2

]
+O

[
ln

(
p

pp

)]
+O

( p

pp

)2
+O

( p

pp

)4
+ ... (249)

In the limit of large momentum (p/pp → ∞), this result contains an infinite number of infinities,
each worse than the last, and perturbation theory completely breaks down. And we haven’t consid-
ered loop diagrams having vertices that involve other types of particles or more than three graviton
lines. These families of loop diagrams introduce even more infinities.

In QED, loop diagrams only introduced two infinite quantities, which were swept under the rug by
adjusting the definitions of mass and charge. As we have seen, loops in quantum gravity lead to an
infinite number of infinities. Even if we could eliminate them all by adjusting the definitions of an
infinite number of natural parameters, no useful predictions of physical effects could be made by a
theory with an infinite number of fudge factors.

There are also other difficulties with quantum gravity. Splitting the metric into a background part
that is treated classically and a perturbation component that is treated with quantum field theory
seems very artificial and forced. It is the total metric that determines what parts of spacetime are in
the past or the future and what regions cannot communicate with each other without exceeding the
speed of light. Yet that is difficult to ascertain when the metric is split into two parts and one part
is allowed to vary freely. Another way of viewing these difficulties is that in quantum gravity, the
metric (or at least part of it) represents both the field and the total spacetime background in which
that field occurs. This is in sharp contrast with the field theories for all the other fundamental forces,
where the field in question and the spacetime background were completely separate quantities and
the spacetime background was kept fixed. For more information on quantum gravity and its many
headaches, see [7] and the references cited therein.

The bottom line is that it should be okay to treat gravity as a classical field via the theory of gen-
eral relativity for momenta/energies less than the Planck momentum/energy and distances/times
greater than the Planck length/time:

EP ≡
√
h̄c5/G ≈ 1.22 · 1019 GeV Planck energy

LP ≡
√
h̄G/c3 ≈ 1.62 · 10−33 cm Planck length

TP ≡
√
h̄G/c5 ≈ 5.39 · 10−44 sec Planck time (250)
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Note that these values are many, many orders of magnitude beyond what can be achieved with
existing technology. Indeed, only phenomena such as the initial moment of the big bang or the
singularity of a black hole would go beyond these values. For such phenomena, general relativity
and simple quantum gravity calculations break down and a new theory is needed to describe what
happens. There are several candidate theories such as supergravity and superstrings [3], but one
cannot tell which (if any) of them is correct unless they make unique predictions that can be tested
in a realizable experimental system.

Even in cases where a gravitational field can be treated in a well-understood, classical manner, it can
still have interesting interactions with electromagnetic or other fields that are behaving quantum
mechanically. Quantum effects can be greatly altered if they occur in the curved spacetime of a
strong gravitational field rather than the flat spacetime that is normally assumed [8]. In principle,
one could calculate how the metric gµν of a curved spacetime would enter into the general Feynman
rules for QED or other processes, although in practice this is so difficult that it isn’t really done.

The best-know example of a quantum effect occuring in curved spacetime is Hawking radiation
from black holes. For a simple description and calculation of this effect, see Relativity 6.1.
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