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There was a young lady named Bright,
Whose speed was far faster than light;
She set out one day
In a relative way,
And returned home the previous night.

—Arthur Henry Reginald Buller, in Punch (December 19, 1923)

...when the Rabbit actually took a watch out of its waistcoat-pocket, and looked at it, and then
hurried on, Alice started to her feet... and was just in time to see it pop down a large rabbit-hole
under the hedge.

In another moment down went Alice after it, never once considering how in the world she was to
get out again...

Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down
to look about her, and to wonder what was going to happen next. First, she tried to look down
and make out what she was coming to, but it was too dark to see anything...

—Lewis Carroll, Alice’s Adventures in Wonderland (1865)

Overview

Special relativity describes the weird things that happen when you travel close to the speed of
light, including time slowing down, lengths contracting, and not being able to accelerate past light
speed no matter how hard you try. These weird effects are manifestations of the facts that space
and time are interrelated, and mass and energy are interrelated.

General relativity describes the weird things that happen when you get close to very strong
gravitational fields, including time slowing down, planetary orbits and even light being bent, and
stranger things like black holes from which even light cannot escape. These effects are due to the
fact that mass and energy are each capable of warping space and time. The degree and character of
the warpage are determined by very nasty four-dimensional tensors (4x4 or even 4x4x4x4 matrices),
but in most cases, the effects may be described and even calculated using a much more physically
intuitively approach. Important problems which can be addressed either the easy way or the
hard way include classic tests of general relativity (gravitational redshifting of light, gravitational
bending of light, precession of Mercury’s perihelion, and gravitational waves), the gravitational
fields of stars, black holes, and wormholes, and models for the overall structure and history of
the universe. Certain quantum mechanical effects in general relativity can also be addressed even
without a full-fledged quantum theory of gravity.
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1 Special Relativity

Special relativity describes the weird things that happen when you travel close to the speed of
light, and general relativity describes the weird things that happen when you get close to very
strong gravitational fields. A thorough understanding of special relativity, which describes the
interrelationship between space and time, is a prerequisite for studying general relativity, in which
both space and time are distorted by gravity. Therefore we will cover special relativity thoroughly
before moving on to general relativity. Readers may choose the helpful hogwash version or the
scary math version. And if you think the helpful hogwash version has scary math, just wait until
you see the scary math version. For more information, see [1]-[2].

1.1 Helpful Hogwash Version

The sort of weird effects that occur due to special relativity are not the sort of thing you see in
everyday life, so it can be somewhat difficult to wrap your brain around why they happen. To assist
your brain wrapping, we are going to give three completely different, brief, and hopefully helpful
hogwash explanations for special relativity. If you don’t like one of them, try one of the other two.

Keep calm and turn the page...
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Helpful Hogwash Explanation Number 1

Two foundational concepts lead to special relativity, as illustrated graphically in Fig. 1.

e There is no fixed stationary reference frame in the universe. You may have experienced being
in a car with another car moving along side of it, or inside a train with another train moving
along side of it, and momentarily being unsure if your vehicle was moving one way or the
other vehicle was moving the other way. As illustrated in Fig. 1(a), if objects are moving
with constant velocities relative to each other (not accelerating), one cannot say which one if
any is really stationary. Velocity is relative. (In space, no one can hear you scream. )

e Maxwell’s equations describe light and other electromagnetic waves moving at the speed of
light ¢ ~ 2.9979 x 108 m/sec, without regard to the speed of any observer ( Electromagnetism
?7.7). Therefore, observers always see light traveling at light speed, no matter how fast the
observers are going. Imagine a spaceship chasing a light wave through space [Fig. 1(b)]. If
the ship is going at 90% of light speed, it will see the light moving at only 10% of light speed
unless either (1) time slows down on the ship (making the light appear to move faster), or
(2) distances contract on the ship (making the light appear to cover more ground). In fact,
both effects occur.

I’m stationary. No, I am. No, I am!

(b)

NCC-1701

ORIV

90% of light speed 100% of light speed

Figure 1. The two foundational concepts for special relativity. (a) There is no fixed
stationary reference frame. If objects are moving with constant velocities relative to each other
(not accelerating), one cannot say which one if any is really stationary. (b) An observer always
sees light traveling at light speed, no matter how fast the observer is going.
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Helpful Hogwash Explanation Number 2

Alternatively, consider the view of space and time illustrated in Fig. 2. Distance is a real number
and time is an imaginary number (meaning it uses i = \/—1). The horizontal axis represents
position in space. The vertical axis is the time on Earth, assumed to be a “stationary” reference
frame to simplify the example; the time is multiplied by the speed of light ¢ so that both axes have
units of length. Light travels on a diagonal line where position/time = c.

If a spaceship travels away from Earth at a constant velocity v, an observer on Earth would say
that the ship had traveled a distance vtg,tn after an elapsed Earth time tga¢n. Since the ship
is moving at a constant velocity, observers on the ship would feel that they are in a “stationary”
reference frame and are moving straight forward through time, so the elapsed ship time is given by
the hypotenuse of the red triangle, the length along the ship’s trajectory. The ship measures its
time axis in units of ict, just as the Earth does.

v
V tgartn = . (C tharn) Pythagorean theorem:
t
Earth ' o , _ )
(ict,)” = (1Ctgy)” + (?) (Ctparen)
=
=
<
o B V12
g\‘ £ tship - tEarth - (?)
s & oS .
g ° ~ V=0 2>ty = tpy, (NOrmal time)
E o
° v=Cc P ty, = 0 (frozen in time)
= :
= If time were a real number,
the — sign would be a +,
and ship time would be

0 Position in space faster than earth time,
not slower.

Figure 2. The interrelationship between space and time in special relativity. The main
axes show the perspective of an observer on “stationary” Earth watching a spaceship move away
at velocity v. If v = 0, the ship moves vertically through time at velocity ¢ without traveling in
space. If v = ¢, the ship travels at the maximum speed (¢) through space but does not age (the
elapsed ship time is 0).

Using the Pythagorean theorem to relate the lengths of the three sides yields an equation for
converting between Earth time and ship time:

2
tship = lgarth \/1 — (Z) = t]*l’?;‘th 3 where (1)
_ L _ ! (2)
T T VT T VIR
g =2 (3)

C
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The - sign in the square root of Egs. (1) and (2) arises because time is imaginary, and it means that
ship time is slower than Earth time. This strange mixture of real spatial axes and an imaginary
time axis is called Minkowski space-time. If time were a real number, the - sign inside the square
root sign would be a +, and ship time would be faster than Earth time. That all-real coordinate
system is called Euclidean space-time, but it does not describe our universe.

Time onboard the spaceship moves more slowly than time on the earth by a factor of ~. If there
were people on the ship, they would move, think, and age more slowly by this factor. Figure 3
graphs values of v for velocities ranging from v = 0 to v = ¢.

10

/|

I

1

0
0 0.2 0.4 0.6 0.8 090951
v/c
Figure 3. Graph of v = [1 — (v/c)?]~!/? multiplier versus velocity. This is the factor by
which time slows down, length in the direction of travel contracts, and the effective mass increases
for an object traveling at velocity v relative to a “stationary” observer.

For these same reasons, lengths in the direction of travel also appear to be shorter by this same
factor -, as viewed by observers on the ship:

[

2 A
LEarth
Awship = Aanrth 1_<) = —

Y

(4)

Cc

Thus for observers on the ship, time slows down and distances contract, making light still appear
to be moving at light speed, as predicted in the second bullet point on p. 3.

Note from Figs. 2 and 3 that for v = 0, all of these weird effects disappear, and the spaceship
experiences space and time the same way that observers on earth do. At the opposite extreme,
for v = ¢, v becomes infinite; the ship hurtles through space at light speed relative to the earth,
but any astronauts onboard are frozen in time and do not age. In practice, only light and other
massless particles can reach this speed. Spaceships and other objects with mass can only approach
light speed arbitarily closely before v and the equations of motion blow up.
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Helpful Hogwash Explanation Number 3

If Figs. 2 and 3 seems too scary, another way to view the time effects is from the perspective of
time onboard the spaceship, regardless of how fast the ship is going. Put this way, you are always
moving at light speed, either through time or space. The vertical axis in Fig. 4 represents your
speed through time, while the horizontal axis represents your speed through space. If you aren’t
moving through space, you are moving through time at the speed of light (getting older at 1 second
per second). As your speed through space increases, your speed through time decreases (you age
at less than 1 second per second). If you go at the speed of light through space, you stop moving
through time entirely (you appear frozen in time). You can’t get past the frozen-in-time point to
start going backward in time. This description is equivalent to that in Fig. 2, just remaining in
the point of view of the ship regardless of its velocity relative to the external reference frame.

Your speed through time
(2) As your speed through

space increases, your speed
through time decreases
(you age at less than

1 second per second)

(1) If you
aren’t moving
through space,

you are moving
through time
at the speed
of light
(getting older
at 1 second
per second)

Your speed through space

c
(4) You can’t get past the
frozen-in-time point to start
going backward in time

Figure 4. Effects of special relativity from the point of view of a moving observer. You
are always moving at light speed, either through time or space. The vertical axis represents your
speed through time, while the horizontal axis represents your speed through space. (1) If you aren’t
moving through space, you are moving through time at the speed of light (getting older at 1 second
per second). (2) As your speed through space increases, your speed through time decreases (you
age at less than 1 second per second). (3) If you go at the speed of light through space, you stop
moving through time entirely (you appear frozen in time). (4) You can’t get past the frozen-in-time
point to start going backward in time.
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Post-Hogwash Stress Syndrome

If any of those three hogwash explanations made sense to you, we can move along. If they didn’t,
you can write your own book on relativity.

Since objects must travel more slowly than light, their trajectories are constrained to remain within
a light cone in space and time, as shown in Fig. 5. The vertical direction represents time traveling
upward from the past to the future. Two spatial dimensions are shown as the horizontal axis and
the axis perpendicular to the page. For simplicity of illustration, the third spatial dimension is
not shown. In this coordinate system, if the current position and time of an object are known, the
object must have been within the lower cone at all times in the past, and it must remain within the
upper cone at all times in the future. The slope of the cone (dividing space by time) is the speed
of light ¢. The object cannot visit places and times outside the cone without traveling faster than
light, which is generally frowned upon.

lerne Traveling at light speed or less,
( ut}fre) you could be anywhere
within this cone
in the future
S You cannot
< b ;()a;:e visit these
X Yqu are here places and
Space right now times without
) ‘ traveling
v Space/time Traveling at faster than
Time slope of light speed or light
(past) cone -~ less, you could have
3t spatial dimension (z) -¢ been anywhere within

not shown for simplicity this cone in the past

Figure 5. Light cone. The vertical direction represents time traveling upward from the past
to the future. Two of the three spatial dimensions are shown as the horizontal axis and the axis
perpendicular to the page. If the current position and time of an object are known, the object must
have been within the lower cone at all times in the past, and it must remain within the upper cone
at all times in the future. The slope of the cone (dividing space by time) is the speed of light c.
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(a) Incorrect but useful explanation (b) Correct explanation
4 pC 3 pC

E? = (mc?)? + (pc)? -(mc?)? = -E? + (pc)?

A

v
]
'S

NO
=

Energy in time dimension
Energy in time dimension
1E

Energy in space dimension Energy in space dimension

Figure 6. The relationship between mass, momentum, and energy in special relativity.
(a) An incorrect but mnemonically useful explanation. (b) The correct explanation.

Figure 6 shows how mass, energy, and momentum can be viewed in special relativity. An incorrect
but mnemonically useful explanation [Fig 6(a)] is that a moving object has two orthogonal types
of energy, pure rest energy mc? due to the object’s motion through time, and pure kinetic energy
pc due to the object’s momentum p through space. Matter that is not moving only has rest energy
mc?, whereas light only has kinetic energy pc. If the total energy E is the vector sum of these two
components, doing the Pythagorean theorem thing yields the correct relativistic equation for E:

E = 2t po? = yme? (5)
1
~ mc® + imv2 + smaller terms for v < ¢ (6)

Likewise the momentum is

p = ymu (7)
~ mouforv<Kece (8)

Equations (5) and (7) show that these effects are equivalent to increasing the rest mass by a factor
of ~v from Fig. 3; as an object approaches the speed of light, its effective mass becomes so large
that one can never exert enough force to accelerate the object all the way to light speed.

For v/c < 1, the momentum p in Eq. (7) reduces to the usual nonrelativistic expression p = muv
as shown in Eq. (8), and F in Eq. (5) reduces to a simple sum of the rest energy mc? and the
nonrelativistic kinetic energy mv?/2, as shown in Eq. (6).

The correct explanation [Fig. 6(b)] is that the total energy F is what extends into the time
dimension, and it is imaginary just as time coordinates are imaginary in Fig. 2. The kinetic energy
due to an object’s momentum through space is indeed pc. An observer moving through both space
and time at a constant velocity could consider themselves at rest, with only a rest energy imc?
(imaginary since that is the time dimension for the moving observer). Using the Pythagorean
theorem with these side lengths again gives the correct answer for the energy.
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Lest you think we just made up all this weirdness, particle accelerators such as the Large Hadron
Collider (LHC) shown in Fig. 7 routinely accelerate electrons, protons, and other particles to nearly
the speed of light and confirm that their time slows down, that their effective mass increases, that
they can never reach the speed of light, and so forth.

Figure 7. Particle accelerators are the ultimate demonstration of special relativity. (a)
An overhead view of the CERN Large Hadron Collider (LHC) in Switzerland. The underground
accelerator follows the red circle and is 17 miles long. (b) An inside view of the LHC. Note the
person standing near the bottom for scale. The LHC imparts energies up to 7 trillion electron-volts
per particle. Particle accelerators like this can push electrons, protons, and other particles up to
99.999999999% of light speed, but never faster than light. At such high velocities, time slows down
as expected, as demonstrated by the fact that particle decays take much longer than they would
for particles at rest. Similarly, the observed mass increases and length decreases correspond with
the predictions of special relativity.
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1.2 Scary Math Version

If the explanations of Section 1.1 made too much sense to you, fear not, we can cover the same
ground using much more confusing math. Specifically, special relativity may be written much more
formally using matrices called tensors. This tensor notation is an especially important tool for
general relativity, so you might as well learn it now for special relativity.

The position vector of something in four-dimensional space-time is

dt = (2,227 (9)
= (ct,x,y,z) in rectangular coordinates (10)
= (ct,r,0,0) in spherical coordinates (11)

The superscripts in Eq. (9) denote the four coordinates of space and time and should not be
confused with exponents. As in the hogwash explanation for special relativity, time is multiplied
by ¢, 2¥ = ct, so that the time dimension can be measured in units of length just like the three
spatial dimensions. Unlike in the hogwash version, however, time is not multiplied by ¢; that same

function will be performed by the scary tensors in just a moment.

In converting from rectangular to spherical coordinates as in Egs. (10)-(11), € is measured from
the z-axis and ¢ is measured in the x-y plane from the x-axis, following the conventions of Applied
Mathematics 7.7.

Greek indices like g and v denote all four dimensions (time and space, dimensions 0 through 3),
whereas Latin indices like j and k denote spatial dimensions only (dimensions 1 through 3).

The Einstein convention for implicit summation saves cluttering up equations with a lot of
>~ summation signs: repetition of the same index label on the same side of an equation denotes
summation over all values of that index. Use of implicit summation will be illustrated very shortly.

N is the reference metric of space-time that is not warped by gravitational fields. Unwarped space-
time is also called flat or Minkowski space-time and is what we are used to in special relativity.
Depending on whether coordinates are rectangular or spherical, the metric is:

-1 000 -1 0 0 0
B 0 1 0 0 - 0 1 0 0
v = 0 010 - 0 0 72 0 (12)
0 0 0 1 0 0 0 7r2%sin?40

rectangular spherical

Hey, we warned you this would be scary.
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The distance between two infinitesimally close points in space-time is defined to be ds. In flat
space-time, it is determined by 7,,,:

ds* = n, dot dz” (13)

= ZZ N dt dz” (14)
noov
= —(cdt)? + da® + dy® + d2? (15)

Equation (13) uses the Einstein implicit summation convention, as shown more explicitly in Eq.
(14). Be warned that implicit summation will be used with wild abandon from now on.

The -1 in the upper left (time-time) position of the metric serves to introduce a - sign in the first
term of Eq. (15) Thus the metric tensor serves the same role here as defining time to be imaginary
did in Fig. 2, and it leads to the same result. The matrix inverse of 7, is n*. The corresponding
individual elements of these two matrices are actually the same.

In special relativity (or in general relativity when space-time is essentially flat), one raises and
lowers indices using 7, and 7*¥. For example, x, = 7,2 and z# = n*”z,. Using this notation,
Eq. (13) can be rewritten in an even more compact form:

ds* = dz,dz" (16)

Likewise, designating E/c as the zeroth or time component p® of a momentum four-vector p* =
(E/c,p',p?, p3), the relation between energy, momentum, and mass can be written as

(e = pup’ ()
2
= (2) b (13)

in agreement with Eq. (5).

Relative to some reference frame, a motionless spaceship moves straight through time, but a moving
ship moves at an angle ¢ through time and space. Thus when the ship changes from motionless
to moving at this velocity, it is equivalent to rotating in space-time by an angle ¢. This is called
a Lorentz transformation or Lorentz rotation and is illustrated in Fig. 8(a). As shown in
Fig. 8(b), boosting a ship’s velocity by an angle ¢; in space-time, and then boosting it again by
an angle ¢, increases the ship’s total velocity, but the total velocity can never reach the speed of
light.
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straight through time, but a moving ship travels at an angle ¢ through time and space. Thus when

the ship changes from motionless to moving at this velocity, it is equivalent to rotating in space-
time by an angle ¢. (b) Boosting a ship’s velocity by an angle ¢, in space-time, and then boosting

it again by an angle ¢9, increases the ship’s total velocity, but the total velocity can never reach

the speed of light. (c) A spatial rotation by angle § changes the coordinate axes x and y to new

axes 2/ and y'. (d) A space-time rotation by angle ¢ changes the axes from ¢t and z to ¢t and z’.
Since time coordinates are imaginary numbers and spatial coordinates are real numbers, the new

axes appear distorted to a “motionless” observer using ct and x coordinates, but ct’ and x’ appear

orthogonal to each other and perfectly normal to a moving observer using those new coordinates.
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As illustrated in Fig. 8(c), a spatial rotation by angle 6 changes the coordinate axes z and y to
new axes x’ and y':

x’ _ cosf) —sinf T _ xrcosf — ysinf (19)
Y - sinf  cos® y - zsinf + ycosb
As depicted in Fig. 8(d), a space-time rotation by angle ¢ changes the axes from ct and x to ct/

and 2’. The transformations from Eqs. (1)-(4) can be formalized in terms of tensors and then
expressed in terms analogous to Eq. (19) for purely spatial rotation:

ct’ v =8 0 0 ct cty — xf
x’ _ -8 v 0 0 x _ —ctyB + xv (20)
Y 0 0 10 Yy Y
2! 0 0 01 z z
cosh¢ —sinhg 0 O ct ctcosh¢ — xsinh¢
_ —sinh¢ cosh¢ 0 0 T _ —ctsinh¢ + xcosh ¢ (21)
0 0 10 Y Y
0 0 01 z z

Since time coordinates are imaginary numbers and spatial coordinates are real numbers, the angle
¢ between them is actually an imaginary number. Writing ¢ as a real number causes Eq. (21) to
be written in terms of cosh and sinh instead of cos and sin as in Eq. (19). This imaginary business
also makes the new axes in Fig. 8(d) appear distorted to a “motionless” observer using ct and z
coordinates, but ct’ and ' would appear orthogonal to each other and perfectly normal to a moving
observer using those new coordinates.

In this nifty notation, velocity is simply v/c = tanh ¢. Adding two velocities vy /¢ = tanh ¢; and
va/c = tanh ¢ yields a total velocity viotal/c:

tanh ¢y +tanhgo  (vi/c) + (va/c)
1 +tanh¢;tanh gy 14 (vive/c?)

O — tanh(gy + ¢2) = (22)

Thus two space-time angles ¢1 and ¢o can just be added together, even though their corresponding
velocities cannot simply be added together (vi + va2 # viotal), since the total velocity can never
reach the speed of light. [Note that in the nonrelativistic limit of v; and vy much less than the
speed of light, Eq. (22) does reduce to the simple addition of velocities.]
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2 Principles of General Relativity—Helpful Hogwash Version

This section will explain the key ideas of general relativity in a very physically intuitive fashion,
as opposed to the highly abstract mathematical presentations that are generally given in all the
textbooks [3]-[11] and summarized in Section 3. This section will explain the starting point for
general relativity, then discuss how gravitational fields affect time and space.

2.1 Starting Point for General Relativity

The starting point for general relativity is that gravitational attraction is indistinguishable from
acceleration. As shown in Fig. 9(a), someone standing in an elevator cannot tell if it is resting in
the earth’s gravitational field versus way out in space but accelerating. Similarly, someone floating
in an elevator cannot tell if it is falling in the earth’s gravitational field versus floating way out in
space, as illustrated in Fig. 9(b). This is the equivalence principle: a region with a uniform
gravitational field (e.g. the gravitational acceleration at the earth’s surface, g ~ 9.807 m/sec?) and
a uniformly accelerating reference frame are equivalent.

(a) Someone standing in an elevator cannot tell if it is:

Resting in the earth’s gravitational field or Way out in space but accelerating

!
1

(b) Someone floating in an elevator cannot tell if it is:

Falling in the earth’s gravitational field or Floating way out in space

X
1 X

Figure 9. Starting point for general relativity. (a) Someone standing in an elevator cannot
tell if it is resting in the earth’s gravity or way out in space but accelerating. (b) Similarly, someone
floating in an elevator cannot tell if it is falling in the earth’s gravity or floating way out in space.

Special relativity was called special because it only dealt with a special case: different frames of
reference that were moving with constant velocities relative to each other. General relativity is called
general because it can be used to analyze frames of reference that do not have constant velocities, i.e.
frames of reference that are accelerating or decelerating. The notion that gravitational attraction
and acceleration are equivalent means that general relativity describes gravitational fields. Just
as traveling near light speed can “shorten” both time and space, as described in Section 1, strong
gravitational fields also shorten time and space, as will be explained in the next two subsections.
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2.2 Gravity Shortens Time

As shown in Fig. 10, electromagnetic waves gain energy (are blue-shifted to shorter wavelengths
and higher frequencies) falling into a gravitational field and lose energy (are red-shifted to longer
wavelengths and lower frequencies) escaping from a gravitational field.

Electromagnetic waves gain energy
falling into gravitational field

UAWAWEVAVIUE
_/ (.

Electromagnetic waves lose energy
escaping from gravitational field

Figure 10. Gravity shortens time. Electromagnetic waves are blue-shifted to higher energies
and frequencies when they fall into a gravitational field, and they are red-shifted to lower energies
and frequencies when they escape from a gravitational field. Light has no mass so classically its
energy should not be affected by a gravitational field, yet it is. The explanation is that time is
actually moving more slowly inside a gravitational field than outside, making frequencies from
inside the field look lower to an observer outside the field, and frequencies from outside the field
look higher to an observer inside the field. The effect is not merely an artifact of signal transmission
between the inside and outside of the gravitational field.

The blue shifting of light falling into a gravitational field corresponds exactly to what would be
predicted by considering the energy gained by an object falling into a classical (Newtonian) grav-
itational well. Consider a motionless object of mass m at an observer’s position far from the
well; the object has rest energy mc? and no kinetic energy, making its total rest + kinetic en-
ergy just £ = mc?. If this object were to “fall” down to a distance r from the center of the
gravitational well, the gravitational field would give it a kinetic energy equal to GMm/r, where
G ~ 6.67 - 10~ "' m3kg~'sec2 is Newton’s gravitational constant and M is the mass creating the

gravitational field. The total rest + kinetic energy of the object would then be

G]\;[m = mc? <1+ G—M) . (23)

c2r

E = md+

Therefore the change in energy relative to the energy outside of the gravitational well is:

AFE GM
E - & 29
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Because the energy E and frequency f of light waves are directly proportional to each other (E =
hf, in which h is Planck’s constant), this simple argument predicts a frequency shift of
Af GM

;o e (25)

for light waves falling into the gravitational field.

The time period of wave oscillations is inversely proportional to the frequency of the oscillations,
so the time of the wave oscillations decreases by the same fraction,

ab_ oM (26)

t cor

Light has no mass so classically its energy should not be affected by a gravitational field, yet it is.
The explanation is that relative to the time outside a gravitational field, time inside a field moves
more slowly by the fraction given in Eq. (26), making frequencies from inside the field look lower
to an observer outside the field, and frequencies from outside the field look higher to an observer
inside the field. The effect is not merely an artifact of signal transmission between the inside and
outside of the gravitational field. Someone inside a gravitational field would age more slowly than
someone outside, just as someone traveling near light speed would age more slowly than the frame
of reference of a “stationary” observer in special relativity. Thus gravity “shortens” time by the
fraction in Eq. (26).

(As an aside, it is good that the energy shift applies to photons even though they have no mass.
If photons were unaffected by gravity, stuff in the form of a mass could be dropped down a grav-
itational well, then at least in theory completely converted to photons and transmitted back out
of the well. As a mass falling on the way down the stuff would gain energy, but it would not
lose this energy on the way back up when it is in the form of photons. One could thus generate
energy from nothing. This unphysical outcome is prevented by the fact that photons climbing out
of gravitational wells actually lose energy.)

Because gravitational fields cause time to run more slowly than it does in gravity-free regions, they
can also “tilt” the forward direction of time toward a particular direction in space. In Fig. 11, the
vertical axis is the elapsed time and the horizontal axis is the position in space. If a motionless
(in this frame of reference) massive star or planet with a strong gravitational field is placed in the
middle of the spatial axis, the star or planet will move forward through time, traveling vertically
from the past to the future.

Each blue line in Fig. 11 represents a “simultaneous” moment throughout space. The gravitational
field of the star or planet slows down time in its vicinity, so the blue lines near the massive object
do not travel into the future as quickly.

A “motionless” test object located nearby goes forward through time by moving perpendicular
to each simultaneous moment as shown in Fig. 11. Due to time moving more slowly inside a
gravitational field, the object’s path through time (the red arrow) veers toward the center of the
gravitational field. Time for the test object becomes “tilted” toward the star or planet. And tilting
in space-time is just a Lorentz rotation (Fig. 8), or a change of velocity—an acceleration. Since the
trajectory doesn’t just tilt but continues to curve, the test object’s velocity will continue to change,
as it accelerates toward the star or planet and (if it has enough time before impact) asymptotically
approaches the 45° angle that describes the speed of light on such a space-time graph.
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Figure 11. Gravity shortens time (continued). The vertical axis is the elapsed time and the
horizontal axis is the position in space. A planet or star with a strong gravitational field is at rest in
this frame of reference and travels vertically from the past to the future. Each blue line represents
a “simultaneous” moment throughout space. You age more slowly inside a gravitational field, so
the blue lines near the planet or star do not travel into the future as quickly. A “motionless” test
object goes forward through time by moving perpendicular to each simultaneous moment. Due to
time moving more slowly inside a gravitational field, the object’s path through time (the red arrow)
curves toward the center of the gravitational field, i.e., it accelerates at g = dv/dt = GM /r?.

This behavior is just what we would expect from Newtonian physics without all of the fuss over
general relativity—the test object falls toward the star and continues to accelerate as it falls. Specif-
ically, the incremental change in a test object’s velocity d(v/c) is directly related to the radial
variation in the flow of time, (c dt) d%[l — GM/(cr)):

v d GM GM
dl—-) = dt) —|1———) = (cdt) 5= 27
<c> (cdt) dr < c2r ) (cdt) c?r? (27)
Using Eq. (27), the acceleration of the test object toward the star or planet in Fig. 11 is
dv GM
- - 28
g dt r2 (28)

just like Newtonian gravity! This is the basis of the equivalence principle between gravity and
acceleration as described in Section 2.1.



Special and General Relativity 19

2.3 Gravity Shortens Space

As shown in Fig. 12(a), if you cut a wedge of angle A¢ from a flat (two-dimensional) paper
circle and then tape the cut edges together, the circle becomes a cone that projects into an extra
(third) dimension. Similarly, a gravitational field effectively removes an angle A¢ from the usual
27 radians of a circle enclosing the field [Fig. 12(b)]. The circumference of circular orbits around
massive objects will be disproportionately small in comparison with the radius of the orbit.

(a) (b)
Cut out a wedge A¢ from a flat circle Circumference=2m(dr)= (2rt-A¢)(ds)

<D dw] =

ds

Taping the edges together
makes a cone that projects
into an extra (3') dimension

"l

Figure 12. Gravity shortens space. (a) If you cut a wedge of angle A¢ from a flat (two-
dimensional) paper circle and then tape the cut edges together, the circle becomes a cone that
projects into an extra (third) dimension. (b) A gravitational field effectively removes an angle A¢
from the usual 27 radians of a circle enclosing the field. This is equivalent to space being bent
into an extra (fourth) spatial dimension w. This warping gets steeper as one approaches a massive
object, then gradually levels off inside the object since less and less of the object’s mass is enclosed
by smaller and smaller circumferences.

Since space and time are interchangeable, gravity shortens space (the circumference of the circle)
by the same fraction as it shortens time in Eq. (26),

Ao At
= (29)
_ oM (30)

c2r
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As shown in Fig. 12(b), this spatial distortion is equivalent to space being bent into an extra
(fourth) spatial dimension w that is perpendicular to the usual z, y, and z spatial dimensions,
just as the paper in Fig. 12(a) is forced to bend into an extra (third) dimension. If the spatial
warping removes an angle of A¢ from the expected 27 radians of circumference surrounding the
gravitational well, the change in the circumference is proportional to the change in the effective
radius of a circle around the well:

2 — A 2 1
T 10} dr _ dr _ (31)

27 ds dr? + dw? V1+ (dw/dr)?
1 2
= (dw) , (32)

1%

2\ dr
in which Eq. (32) used a Taylor expansion assuming that dw/dr < 1.

By combining Eqs. (30) and (32), one can calculate the extra spatial dimension w:

dw N 2G M

dr c2r

8GMr
5

(33)

This warping gets steeper as one approaches a massive object, then gradually levels off inside the
object since less and less of the object’s mass is enclosed by smaller and smaller circumferences.
(This is true for objects like stars and planets with distributed mass, but not for black holes with
lots of mass in the center.)

Thus space is like a “rubber sheet” (representing only two dimensions of space for simplicity)
that can be warped into a higher “embedding” dimension as shown in Fig. 12(b); a massive
object (e.g. a star) will create a pothole in the rubber sheet. The embedding dimension is a fifth
dimension perpendicular to the usual four (3 space 4+ 1 time); it may or may not have any real
physical significance as an extra unseen dimension, but at the very least it is useful for visualizing
the spatial curvature. (Spatial curvature does not strictly necessitate the physical existence of this
embedding dimension, since one could view curvature in terms of a variable amount or “density”
of “real distance” per “unseen grid distance” in different directions.)

In the same way that straight lines on the rubber sheet become curved when the gravitational
depression is made, light and inertial “straight-line” motion are curved by the spatial warpage of
a massive object. The warped-space versions of what used to be straight lines are called geodesic
lines, and they will be described mathematically by the nasty Christoffel symbols in Section 3.1.
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3 Principles of General Relativity—Scary Math Version

Having covered the principles of general relativity in a physically intuitive fashion in Section 2,
we will now present the official mathematical version that has for so long made students quake in
their sneakers when they think of general relativity. The terms defined in this section are staples of
general relativity, but they consist almost entirely of gory algebra with very little simple physical
insight into what they mean precisely or why they are defined as they are. The modest physical
insights from the better textbooks [3]-[11] are given below. Fortunately, the simpler, more intuitive
approach of Section 2 is sufficient for analyzing the most frequently encountered problems in general
relativity. In other words, if Section 3 becomes too mathematically violent, you can skip it and
move on to the remaining sections without missing much except post-traumatic stress disorder.

The scary math to be covered falls into four different areas: space-time curvature, the stress-energy
tensor, Einstein’s nonlinear field equation that connects those two, and a linearized version of
Finstein’s equation that is easier to solve.

3.1 Space-Time Curvature

A large part of what makes the math of general relativity so frightening is that is uses tensors—really
big tensors. A subscript or superscript index denotes the four dimensions of time plus space. A
rank-0 tensor without indices, like G, is a scalar, or just a number. A rank-1 tensor like x* is a 4x1
matrix, or a vector. A rank-2 tensor like 7, is a 4x4 matrix, which occupies two dimensions of a
page when written out as in Eq. (12). So far no problem, right? We’ve done physics calculations
since we were in preschool with scalars, vectors, and two-dimensional matrices.

The problem is that general relativity involves rank-3 tensors like Fo‘m that are 4x4x4 matrices.
In other words, if the complete matrix is written all together, it occupies three dimensions, the two
in the page and the one coming out of the page, and it looks like a cube built out of 64 individual
numbers. But even worse, general relativity has rank-4 tensors like Raﬁw that are 4x4x4x4
matrices! Try writing that easily unless your notebook pages are four-dimensional tesseracts.

Whereas the metric of flat space-time in special relativity is 7, from Eq. (12), the metric of
general (possibly warped) space-time in general relativity is g,., so that the distance ds between
two infinitesimally close points in space-time is

ds? = gudz*dx”  for curved space-time (34)

In other words, in general relativity, one raises and lowers indices using g,,, and g"” (instead of 7,
and 7 as in special relativity), where g"” is defined to be the matrix inverse of g,,. The metric
tensor is symmetric under the interchange of indices: g, = guu.

Another definition sometimes encountered is g = det (g, ).

Thankfully, at least G still means the old-fashioned Newton’s gravitational constant G = 6.67 x
10~ m3 kg~! sec2.

As a very simple, compact notation, commas in subscripts or superscripts denote differentiation
with respect to the index or indices after the comma. For example:

Xy = 0,X, = 0X,/02"

Xu7” = 0"X, = 0X,/0x,



22 Special and General Relativity

The Christoffel symbol or affine connection describes how straight lines in flat space-time get bent
in warped space-time:

1
[, =T%;= §ga"(ga/gﬁ + 9oy.8 — 9Bv.0) Christoffel symbol or affine connection (35)

Freely moving particles in curved (Riemann) space follow geodesic lines, the same way freely moving
particles would follow straight lines in flat space:

d2x™ dx? dz?

«

—= + o = geodesic line in Riemann space (36)

In flat space %, =0 for all components. Using this fact and rewriting things in terms of the

proper time 7, where (d7)? = —(ds)?, the equation of motion reduces to
Az
— =0 classical law of inertia. 37
o= (37)

The curvature of what used to be straight lines must be considered when taking derivatives of things
that vary with time or spatial position. This prompts the introduction of a fancy new derivative
(called a covariant derivative) that uses T’ “4, to account for the effects of curvature:

Ar, = AF +T¥,, A%  covariant derivative of vector A* with respect to 2 (38)

Note that a semicolon is used to distinguish this type of derivative from its less sophisticated cousin,
which only uses a measly comma.

The Riemann curvature tensor describes space-time warping:
Ro.5 =T %5, —T%, 5 + 1915, = 19T, Riemann curvature tensor  (39)

The Riemann curvature tensor’s components are all zero if and only if the space is flat. In a region
free of matter and energy, “3,6 may still have nonzero components, indicating that the space in
that region is warped by matter or energy in nearby regions.

The Ricci tensor is a partially contracted version of the Riemann tensor and describes changes in
the space-time warping due to the presence of mass or energy:

Ry =Ry =R, Ricci curvature tensor (40)

The Ricci tensor’s components are all zero for a certain region if there is no matter or energy in
that region; even if R,, = 0 for all components in a given region of space-time, that region may
still be warped.

Contracting the Ricci tensor all the way gives the Ricci scalar curvature:
R=R",=¢""Ru Ricci scalar curvature (41)

The Einstein tensor is very similar to the Ricci tensor:

1
Guw = Ry — igWR Einstein curvature tensor (42)

Like the Ricci tensor, the Einstein tensor describes changes in the space-time warping specifically
due to the local presence of matter-energy. Its components are all zero for a certain region if there
is no matter-energy in that region, although a region of space-time may still be warped even if
G = 0 for all components there. The similarities between G, and R, imply that:

Guw=0 <= R, =0. (43)
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3.2 Stress-Energy Tensor

TH is the stress-energy tensor due to matter or energy. “Momentum-energy tensor” would
probably be a better name, since the physical meaning of the stress-energy tensor’s components is:

T = density of mass-energy
T = pt/volume T7% = 1/c times the energy flux in the j direction
= 1/c times the density of the j component of momentum

T7% = j component of force per area acting on k side of an infinitesimal cube

= k component of flux of j component of momentum

The three-dimensional matrix 77% may also be identified with the three-dimensional matrix in Fluid
Mechanics and Aerodynamics 7.7 which describes the pressure and viscous forces within a fluid.

The stress-energy tensor is symmetric: TH = TVH.

For a gas with mass density p, pressure p, and velocity v, the stress-energy tensor is:

pc2 0 0 0

_ p . 0O p 00
™ = (p + 62) Uy — GuvP = 0 0 P 0 (44)

0 0 0 p rectangular, flat space, rest frame
The stress-energy tensor for electromagnetic fields is:
700 — 8% (E2 +B2)
1 1 . . .

™ = = (F“O‘F’; — 4g“”FaBFO‘B) 7% = T30 = ﬁ (E x B)’ (45)

ik _ 1 i ok i pky 4 1 ik
1% = - [-(E'E" + B'B") + §(E2 + B%)§7%]
On the extreme right-hand-side of Eq. (45), the components of the stress-energy tensor have been
written for flat space-time and Cartesian spatial coordinates.
The conservation laws for energy and momentum may be written in terms of the stress-energy
tensor as

™, =1",+ 1", 17" + 1V, T" =0 conservation of energy and momentum (46)

Note that whereas the covariant derivative of a rank-1 tensor requires only one term involving the
affine connection, the covariant derivative of a rank-2 tensor like T#” contains two terms involving
the affine connection. Of course, in flat space-time the semicolon could be replaced by a comma and
one could forget that one had ever had the misfortune to hear anything about affine connections.

By assuming space-time to be flat and separating Eq. (46) into its energy and momentum compo-
nents, one finds

197% 970l T2 HTO3

To’jy = - 5 + 971 + 922 + 93 =0 conservation of energy (47)
: 1™ ort o1 0T
™, = an + pIs! + 92 + 923 =0 conservation of ¢ component of momentum (48)

The detailed physical meaning of Eqgs. (47) and (48) may be seen by considering the definitions of
each component of T* which were given above.
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3.3 Einstein’s Gravitational Field Equation

Just as V2® = —4rp for a Newtonian gravitational potential ® in the presence of mass density
p, in general relativity the relationship between gravitational strength and mass (or energy, since
E = mc? for a mass at rest) is:

8rG

G = ——
p A

Ty Einstein’s equation (49)

It follows that just as V2® = 0 for Newtonian gravity in regions of zero mass density, so also the
absence of local matter-energy (T*” = 0) in general relativity implies that

Guv =0 (or equivalently R, = 0) in regions free of matter-energy. (50)

Note that this does not mean that there is no space-time curvature (zero Riemann curvature tensor)
in such regions, only that the Einstein curvature tensor is zero there.

Einstein’s field equation (49) may be rewritten in a simplified form as the pressure needed to impart
a certain curvature to space:

64

Pressure (7)) [in N/m? = e
T

x spatial curvature (G,) [in 1/m?]

= 4.83x10* x spatial curvature (G,,) [in 1/m?] (51)

Because ¢ is so large and G is so small, it requires a pressure of 5 x 10*2 N/m? to create a
spatial curvature of 1 m~2. That means that it takes a heck of a lot of pressure or matter-energy
to significantly warp space-time. In other words, space-time is a deformable substance but an
incredibly stiff one.

In the author’s opinion there is not really a good derivation for Einstein’s equation, so it is simplest
to take the equation as an assumption that appears to model reality fairly well, just as Newton’s
earlier law of gravity was an assumption aimed at modeling reality. In one common derivation of
Einstein’s equation, one first assumes a certain form for the gravitational action and then minimizes
this action to arrive at Einstein’s equation; unfortunately, this method merely exchanges the initial
assumption about the field equation for an initial assumption about the gravitational action. Other
common derivations consider which candidate curvature tensors one might define which would be
as simple as possible and yet would obey all the appropriate mathematical and physical constraints;
this approach is also just a form of shifting the initial assumptions, and it entails a lot of frightening
mathematical abstraction as well. Readers interested in these derivations may consult [7].
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3.4 Linearized Gravitational Field Equations

For more insight into what the equations of general relativity mean, it is helpful to linearize the
equations. The linearized equations are also useful in their own right for calculating various physical
effects which do not involve strong gravitational fields or extreme curvature of space-time. Analogies
between linearized gravity and electromagnetism (EM) will be pointed out and exploited along the
way.

If there are only small perturbations h,, < 1 to space-time, the metric may be expressed as a linear

combination of the perturbations and the metric for unperturbed, flat Minkowski space-time:
g,ul/ = 77;1,1/ + huy . (52)

It is useful to define the D’Alembertian operator, which is the 4-dimensional space-time equivalent
of the 3-dimensional Laplacian operator V2:

1 2
2= <V2 - c2<98t2> D’Alembertian operator . (53)

The linearized versions of the Christoffel symbols and curvature tensors for the above metric are:

1
D%y = 50" (hopy + hoyp = hpyo)

1
Ragys ~ =5 (hay,ss + Moy = has,py = Mras
1 2 op
R, =~ ) {hyuv + hyw — 0P (hpopv + hw,pu)}

Two useful quantities are defined as:

h = n"hyu scalar perturbation (54)

— 1
Py Py — inﬂyh gravitational potential (like vector potential A* in EM)  (55)

Similarly, one may write:

h = n"h, = —h; scalar gravitational potential (56)

1 _
hyw = h“y—gnw,h. (57)

Continuing the analogy with electromagnetism, one finds:

O,k =0  Lorentz (or Hilbert) gauge condition (like 9,A” = 0 in EM) (58)
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In the Lorentz gauge the Ricci tensor and related parameters may be simplified:

12
R, = —3 Py
12
R ~ —— h
2
12 1 12—
Gl“’ ~ —5 (h“y—2h7’]#y) = —5 h“y.

With this last expression for the Einstein tensor, Einstein’s gravitational equation becomes:

167G

2R ~ —— T, linearized Einstein’s equation (like A" = —47.J" in EM) (59)
c

By analogy with the solution of the electrostatic potential in electromagnetic theory,

d*x' p(x,t —|x —x'|)

V20 = —d1p — B(x,t) :/

x—x
the linearized gravitational field equation may be solved:
167G — 4G [ B3X Ty (x,t — |x — X|)
2 _ _ puv \ S
P =~ T = Pat) = of [ R . (60)

Incidentally, in the weak-field limit, the Newtonian gravitational potential ® may be recovered from
the metric via the relation:

20 v
900%1_{_02_{_0(0). (61)



Special and General Relativity 27

4 Classic Tests of General Relativity

While general relativity can cause a number of interesting phenomena, this section will focus on
four well-known tests of the theory: gravitational time dilation, gravitational deflection of light,
the precession of Mercury’s orbital perihelion around the sun, and gravitational waves. All of these
effects may be explained accurately and simply using physical insight into how gravitational fields
shorten space and time.

4.1 Gravitational Time Dilation

The first test of general relativity is that time moves more slowly in a gravitational field. It is
straightforward to measure this effect by comparing atomic clocks on the earth with atomic clocks
in global positioning system (GPS) satellites orbiting the earth (Fig. 13).

Atomic clock on GPS satellite

3900 m/sec
— 426,600 km —— > 7.2 usec/day slow
from center (special relativity)
of Earth
45.6 usec/day Net difference:
fast satellite clock is 38.4 usec/day fast
(general compared to earth clock
relativity)
6380 km
from center Atomic clock on earth
1 of Earth

Figure 13. First test of general relativity: time moves more slowly in a gravitational
field. An atomic clock on a global positioning system (GPS) satellite may be compared with an
atomic clock on Earth. Because the GPS clock is orbiting at 3900 m/sec, special relativity dictates
that it will be 7 psec/day slow relative to the Earth clock. However, because the GPS clock is
20,200 km further away from the Earth’s gravitational field than the Earth clock, general relativity
predicts it will be 45 usec/day slow relative to the Earth clock. Thus the net prediction is that
the GPS clock will be 38 usec/day slow relative to the Earth clock, and this is indeed the observed
amount. Smaller but measurable effects have also been found using atomic clocks on airplanes.
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An accurate calculation of the difference between earth and GPS clocks involves both special
relativity (since the orbiting clock is moving much faster than the earth clock) and general relativity
(since the orbiting clock is further out of the earth’s gravitational field). Both effects will be
calculated below.

In the rotating frame of reference of a satellite in a circular orbit, the inward gravitational accel-
eration GM/r? is exactly balanced by the outward centifugal acceleration v?/r, so the satellite’s
orbital velocity is

GM
v . (62)
= 3870 m/sec for GPS satellite (63)

using the earth’s mass M = 5.98 x 10?4 kg and GPS satellite orbital radius » = 2.66 x 107 m.
An atomic clock on the surface of the earth at the equator has a velocity of 46.4 m/sec from the
rotation of the earth; clocks closer to the poles would have less velocity. The velocity of the earth
clock will be neglected in our special relativity calculations, since it is an order of magnitude smaller
than the velocity of the orbiting clock.

For small velocities, the special relativistic time dilation from Eq. (1) may be approximated as:
At 1
V) [ S

t VI= (/o2
1 1 (v)? 1 (v)?
. 1~ 14 (8 1= (Y 64
= (/0?2 <3 (%) > (2) o4
~ 832x 107" x~ 7.19 psec/day for GPS satellite (65)

where we have used the satellite velocity from Eq. (63). Since time passes more slowly for moving
objects than objects at rest, the GPS clock will be slower than the earth clock by this 7.2 usec, not
including general relativistic effects that will now be calculated.

Using Eq. (26), the general relativistic time difference between the earth and satellite clocks is:

At GM 1 1
T - F(=-) (66)
13 c Torbit Tearth

~ —528x 10710 ~ —45.6 psec/day for GPS satellite (67)

Because time moves more rapidly in regions of lower gravity than in regions of higher gravity,
the GPS clock will be faster than the earth clock by this 45.6 usec/day, not including the special
relativistic effect calculated above. Combining the two effects, the GPS clock should be 38.4
usec/day faster than the earth clock, which agrees well with actual measurements.



Special and General Relativity 29

4.2 Deflection of Light by a Gravitational Field

The second test of general relativity is that massive objects such as the sun can bend the trajectories
of light beams, even though photons of light do not have any mass. Thus for a star whose light
passes near the sun [Fig. 14(a)] on its way to the earth, observers on earth would see an image
of the star that is shifted from the star’s actual position. Gravitational space shortening and
gravitational time shortening each deflect passing light toward the sun; these two effects may be
computed separately and then added together to get the total deflection.

(a) Apparent

position
Acftqal of star
position

of star

@ Observers
on earth

(b) Incoming trajectory
of light ray Original trajectory
g \ A / of light ray
)
Outgoing (deflected)
trajectory of light ray

Figure 14. Second test of general relativity: bending of light by a gravitational field.
(a) Starlight traveling a minimum distance ryi, from the sun on its way to Earth is deflected by
the sun’s gravitational field by an angle A¢. Thus observers on earth would see an image of the star
that is shifted from the star’s actual position. In order to experimentally determine the deflection,
the apparent position of the star relative to other stars can be compared when the starlight passes
near the sun versus other times when the starlight passes much further from the sun. (b) The
deflection angle may be calculated using general relativity. The impact parameter is b, distance at
any point from the center of the sun is r, and angle relative to closest approach is ¢.
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As shown in Fig. 14(b), it will be assumed that light passes the sun with an impact parameter
b. If ¢ is the angle around the sun relative to the point of closest approach, the radial distance of
the light from the star for a given angle is r = b/ cos ¢, neglecting deflection. This approximation
works very well for small deflection angles.

Gravitational shortening of space deflects the light by an angle:

c2r

GM
/ d¢ cos d)%

2GM
c2b

G
B)apee = [ @655

Q

Q

(68)

Gravitational shortening of time tilts the time axis of the light toward the star. Along the direction
of travel, the forward tilt which the light picks up on its way toward the star is cancelled by the
backward tilt induced as the light leaves the star. The only net time tilting is perpendicular to the
direction of travel, in the direction toward the star. Thus the deflection due to time shortening is:

(Ad)time ~ /dﬂcos¢ = /(dt‘flf) <i)

_ GMb /oo dt
- ¢ JoooT?
_ GMb /oo dt
T ) (B2 22)3/2
2GM
Tl (69)

For small deflections, the impact parameter in Egs. (68) and (69) can be approximated by the
minimum distance from the center of the sun, b & ryi,. As expected from Eq. (29), the gravitational
space-shortening and time-shortening effects are equal and additive (they are both toward the sun),
so the total deflection is:

4GM

(Ad)total ~ —5— light trajectory deflection due to gravity (70)
C"T'min

= 1.75 arcsec for starlight just grazing the sun’s surface (71)

using observed values for the sun’s mass My = 1.989 x 10%° kg and radius Rs = 6.96 x 10% m.
Solar eclipses are the best opportunity to image stars whose light passes near the sun without being
overwhelming the imaging equipment with light from the sun itself. Measured values agree well
with the prediction of general relativity.

Because gravitational fields can bend light, massive objects can act as gravitational lenses. Light
from an object behind a gravitational lens can be bent around the sides of the gravitational lens,
creating a multiple image of the object that emitted the light. Many gravitational lenses have been
detected by looking for such multiple images.
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4.3 Shifting of Mercury’s Perihelion

The third test of general relativity is the precession of orbits in a gravitational field. A specific
example is the planet Mercury, which follows a slightly elliptical orbit close to the sun. In contrast
to the predictions of nonrelativistic classical mechanics, the angular locations of the perihelion
(point closest to the sun) and aphelion (point furthest from the sun) of the orbit slowly precess
around the sun, as shown in Fig. 15.

The total precession angle A¢ per orbit is actually a combination of: (a) special relativistic effects on
space, since Mercury’s velocity is a small but nonzero fraction of light speed, (b) special relativistic
effects on time, (c) general relativistic effects on space, since the sun’s gravity distorts space slightly,
and (d) general relativistic effects on time. All of these effects will be calculated separately and
then added together to find the total Ag.

Figure 15. Third test of general relativity: precession of orbits in a gravitational field.
In nonrelativistic classical mechanics, orbits in a central gravitational field return to their precise
starting point after making a 360° revolution, barring interfering effects from drag, other orbiting
bodies, etc. In contrast, relativity predicts that the orbit will precess by an angle A¢ per revolution.
This effect is pronounced for orbits close to a strong gravitational field, such as Mercury’s orbit
around the sun. The precession of Mercury’s orbit has been measured and agrees well with the
relativistic prediction.
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Mercury’s orbit is only slightly elliptical, so to simplify calculations it may be treated as approx-
imately circular with radius r and velocity v from Eq. (62). Because this velocity is a small but
nonzero fraction of light speed, special relativistic effects will alter space and time by a fraction:

Az At 1 (u)2
x t 2 \c
1GM
2 2r 2)

where the first line of Eq. (72) used Eq. (64) and the second line used Eq. (62).

In Mercury’s moving frame of reference, special relativistic effects contract the space around its
orbit by the fraction in Eq. (72). Since the orbit normally covers 27 radians, the spatial contraction
alters each orbit by 27 times the fractional change of Eq. (72):

GM

c2r

(73)

(Aqs)special relativity, space — T

Likewise, Mercury’s time will run more slowly than that of a “motionless” external observer by the
fractional amount in Eq. (72). Thus when an external observer thinks that Mercury has made a full
revolution of period 7', the planet only thinks that it has orbited for a time of [1 — (GM)/(2c¢%r)]T.
Therefore, after the planet has made a “complete” revolution as judged by an external observer,
the planet will continue to make another fraction GM/(2¢?r) of an orbit before it is satisfied that
it has completed one full orbit. Since an orbit has 27 radians (neglecting spatial distortion, which
would cause second-order effects in this case), the special relativistic time dilation makes each orbit
precess by an angle:

(Agb)special relativity, time — T—5 - (74)

From Eq. (30), general relativistic effects shorten space by removing from a circular orbit around
the gravitational field an angle:
GM

cr

(Afb)general relativity, space = 2 (75)

From Eq. (26), an external observer would see time on Mercury (deep inside the sun’s gravitational
field) run more slowly by a fractional amount GM /c?r. This causes orbital precession for the same
reason that the special relativistic time dilation did. The orbital period corresponds to 27 radians,
so the precession due to general relativistic time dilation is:

GM

cr

(A ¢) general relativity, time = 2 (76)

As expected, space and time are equivalent, so the special relativistic space and time effects are
equal to each other, and the general relativistic space and time effects are equal to each other. All
of these effects alter the orbit in the same direction. Adding together all the effects of Eqs. (73)
through (76), the total precession is

GM
(Ad)total = 6T—— (77)
c°r
~ 010 T2 g3 for Mercury’s orbit (78)
orbit year

using the sun’s mass Mg = 1.989 x 10%° kg and Mercury’s average orbital radius 7 = 5.8 x 10'° m.
The precession of Mercury’s orbit has been measured and agrees well with this prediction.
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4.4 Gravitational Waves

The fourth test of general relativity involves gravitational waves. The linearized gravitational field
equation from Eq. (60) may be viewed as a wave equation, as is especially evident in the absence
of sources (7}, = 0):

_ 1 0%\ —
2 _ V2 _
hpr = ( _028t2> fopr =0

— TW(X, t) = Re{C,exp (ikaz®)}
= Re{Cuexplilk-x—wt)]}, (79)

where Cy,, is a glorified (tensor) amplitude, the three-dimensional wavevector includes the spatial
components of k%, k = (k', k%, k?), and the angular frequency of the wave is w = ck”.

The wave equation implies that kok® = 0. This condition may be rewritten as w? — c¢?|k|> = 0,
which is the usual relation for dispersionless waves traveling at the speed of light. Similarly, the
Lorentz gauge condition of Eq. (58) means that the wave must satisfy the relation C**k, = 0.

Thus there can be gravitational waves—ripples in the “rubber sheet” of space-time which propagate
at the speed of light (Fig. 16). Whereas electromagnetic waves are oscillating electromagnetic fields,
gravity waves are actually oscillations of the distances between points—the empty space between
two points alternately stretches and contracts. As described in Section 3.3, space-time is very stiff,
so it takes an enormous amount of energy to create even small gravity waves.

Gravity waves can theoretically be directly detected by using a laser interferometer to sense fluc-
tuations in the distance between two or more spatial points, such as orbiting satellites (Fig. 16).
Unfortunately, gravity waves are weak enough and potential sources of them are scarce enough that
gravity waves have not yet been directly detected in this fashion.

However, gravity waves have been detected by an indirect method. Orbiting massive bodies should
act as a quadrupole source of gravitational radiation, and because gravity waves carry energy with
them, such orbiting bodies should lose energy. Like most general relativistic phenomena, this effect
is small, but it has been detected in the specific case of a binary star system (PSR 1913+16) in
which one of the stellar objects is a pulsar.

Gravitational waves only behave in a linear fashion when their amplitude is small, as has been
assumed above. Strong gravity waves can carry a large amount of energy, and the presence of a
large amount of energy can create gravitational fields, hence the nonlinearity. This is equivalent to
what would happen if electromagnetic waves carried electric charge, since electric charge is capable
of starting electromagnetic waves. For strong gravitational waves one must abandon the linearized
theory above and return to the full, nonlinear Einstein equation for gravitational fields.
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Figure 16. Fourth test of general relativity: two massive bodies orbiting each other
produce gravitational waves. Such waves were first detected indirectly via the energy loss of the
orbiting bodies as the gravitational waves radiate away some of the system’s energy. In principle,
gravitational waves could also be detected directly by measuring the very small variations they
induce in the distances among three satellites.
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5 Stars, Black Holes, and Wormholes

One of the few exact solutions to Einstein’s equation is the Schwarzschild solution, which describes
the space-time around a massive, motionless, spherically symmetric object. This solution will be
derived and applied to stars and simple black holes. Then we will consider modified forms of the
solution for more complex black holes and wormholes. For more detailed information on all of these
topics, see [7]-[13].

5.1 Schwarzschild Solution

We will present two different greatly simplified derivations of the Schwarzschild solution.
Derivation 1

In the absence of any gravitational warping, the metric for Eq. (34) would be g, = 7, from Eq.
(12). To account for gravitational effects, we can begin by considering two motionless observers,
one at a distance r from a mass M, and the other infinitely far from the mass. From Eq. (26),
increments of time dt, for the first observer will move more slowly than increments of time dt., for

the second observer by a factor of
M
ity ~ (1 _¢ ) dto | (80)

c2r

in which GM/(c?r) is typically far smaller than 1. Squaring both sides of Eq. (80) and neglecting
the [GM/(c?r)]? term since it is so small, one finds

2GM

2 _ 2

a2~ <1 — ) de2. (81)
The times of the two observers are related by the time-time component ggg of the metric tensor:
dt} = —goo dt’ (82)
2GM

~ -1 . 83
goo 2r (83)

As discussed in Section 2.3, the effect of gravitational warping on space is very similar to its effect
on time, so the same term 2G M /(c?r) is added to the spatial components of the metric tensor (in
rectangular cartesian coordinates):

2GM

g1 = g22 = 933 +-3, (84)
Thus the complete Schwarzshild metric is
—1+ %M 0 0 0
0 14 2GM 0 0
Juw 0 0 1+ 2GM 0 (85)
2GM
0 0 0 1+ c2r rectangular
2GM
— (1 - 2GM) 0 0 0
2GM
_ 0 (1+24) o 0 ‘ (86)
0 0 72 0
0 0 0 7r2sin?6

spherical
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Because of the spherical symmetry about the center of the mass, the spherical form of the metric
is the more useful form.

The last step in the derivation is to ensure that the metric is an exact and not merely an approximate
solution of the Einstein field equation (49). This requires lots of gory algebra which we will spare the
reader so we can keep our PG rating. Suffice it to say that all of the components of the spherical
metric in Eq. (85) are exactly correct, except for the radial component, g, ~ (14 2GM/ 027'),
which turns out to be a linearized Taylor expansion of the actual nonlinear radial component,
grr = (1 — 2GM/027")71.

With this change, the full-fledged nonlinear metric for the region around a motionless, spherically
symmetric mass is:

— (1 2%m) 0 0 0
2Gm \ "~
G = 0 (1 - c2:ﬂn) 0 0 Schwarzschild metric (87)
0 0 r? 0
0 0 0 r2sin%@

spherical

Derivation 2

A somewhat more rigorous derivation of the Schwarzschild metric uses the linearized gravitational
equations of Section 3.4 to calculate the gravitational field surrounding a motionless, spherically
symmetric mass M which has density p and occupies a region of space denoted by V.

Since the mass is not moving, the only nonzero component of the stress-energy tensor within the
interior of the mass will be Ty = pc?. Outside of the mass, all of the components of the stress-
energy tensor are zero. Because of the relation between the gravitational potential hT“, and the
stress-energy tensor, the only nonzero component of the gravitational potential is

— 4G [ d3x pc?
hoo(x, 1) P S
4GM
= 88
o (88)

where the volume integral of the density simply yielded the total mass M and where r is the
distance from the center of the mass.

The contracted (scalar) form of the gravitational potential is then

_ _ AGM
ho= n"he = (—1)< 2 >
_ _”f;ﬁf | (89)
Now the linear perturbation to the metric may be calculated:
hoo = hoo — %77005
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hjj = hjj — gnih

Therefore the complete linearized metric is

—1+ %M 0 0 0
G = 1 4 = 0 1+ %M 0 0
pv — Tuv N 2GM
0 0 1+ =5 0
0 0 0 1+ 26M

c2r rectangular

This is the same intermediate result as we got from derivation 1 above. As in derivation 1, this
metric can be converted from rectangular to spherical coordinates and corrected for nonlinear effects
from the Einstein field equation to obtain the same exact solution—Eq. (87).

The quantity 2G'M/c?> which appears prominently in the Schwarzschild metric is given a special
name:

2GM M
¢ R~ M—2.95 km Schwarzschild radius (92)

R, =
S C2 ©

in which the mass M has been compared to the mass My ~ 1.99 x 10%° kg of the sun.
Using Eq. (92), the Schwarzschild metric from Eq. (87) may be rewritten as:

-(1- %) 0 0 0
—1
R
G = 0 (1 - 7) 0 (93)
0 0 r2 0
0 0 0 r2sin?6 .
spherical

The significance of the Schwarzschild radius will be explained in Section 5.2. For now, note that
extremely weird things happen to both time (ggo) and space (g11) when r = R, in Eq. (93).

It is important to mention that the Schwarzschild solution is valid only at radii larger than the
radius of the object which creates the gravitational field. As the radial position of the observer
passes the surface of the object and moves closer to the center, less and less of the object’s matter-
energy will contribute to the local gravitational field acting on the observer. (That’s basically just
the gravitational equivalent of Coulomb’s law—you only feel the effects of the stuff that is at smaller
radial distances from the center than you are.) Therefore, inside the object the gravitational well
will forego the precipitous plunge that appears in the Schwarzschild solution near r = R, and
instead will generally level off at some value at the object’s center, as illustrated in Fig. 14. But
the Schwarzschild solution is still applicable to the space external to these objects. Because r > R,
in these cases, Taylor expansions of the Schwarzschild solution may be used to simplify the analysis.
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5.2 Schwarzschild Black Holes

The basic idea of black holes can be derived even without special or general relativity. As shown
in Fig. 17, a certain escape velocity is required to completely escape from the gravitational field of
an object.

(b) Rocket just barely Kinetic Potential
escapes the object’s energy energy
gravitational field E = 0 + 0

i
(no energy left) 4
1
I

Kinetic Potential
energy energy
(a) Rocket with velocity v E = Y%m? - GMm
leaves surface of object r

Figure 17. Escape velocity from the gravitational field of an object. (a) A rocket with
velocity v leaves the surface of the object; the rocket has an energy E = mv?/2 — GMm/r. (b) If
the rocket just barely escapes the object’s gravitational field, it has no energy left £ = 0. Equating
the energies from (a) and (b) yields the escape velocity v = /2GM /r, the minimum initial velocity
that will allow the rocket to leave the gravitational field without falling back into it.

If a rocket with velocity v leaves the surface of the object at point (a), the rocket has a positive
kinetic energy mv?/2 and a negative gravitational potential energy —GMm/r, or a total energy
1 5 GMm

EF = —mv® —
2 r

(94)

If the rocket just barely escapes the object’s gravitational field, it has no energy left by the time it
arrives at point (b) far from the object, so the rocket’s kinetic plus potential energy is

E = 0. (95)
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Assuming the rocket simply coasts from point (a) to point (b) without firing its engines, its energy
is conserved—the rocket’s total kinetic plus gravitational potential energy is the same at the two
points. Equating the energies from Eqs. (94) and (95) yields the escape velocity

2GM

Vescape = o

(96)

The escape velocity is the minimum initial velocity that will allow the rocket to leave the object’s
gravitational field (starting from an initial distance r from the center of the object) without falling
back into it.

For reference, escape velocities from the surfaces of several objects in the solar system are given in
Table 1.

H Object H M (kg) ‘ r (m) H Vescape (1M/s€C) H
Asteroid < 10" < 10° < 100
Moon || 7.35 x 10?2 | 1.74 x 106 2380
Earth | 5.97 x 10%* | 6.38 x 10° 11,200
Sun 1.99 x 10%° | 6.96 x 108 618,000

Table 1. Escape velocities from the surface of an asteroid, the moon, the earth, and
the sun.

Note that the escape velocity is higher (more initial kinetic energy is required) to escape from objects
with a higher mass M, or to escape from a closer distance r to an object where the gravitational
attraction is stronger.

Setting the escape velocity from Eq. (96) equal to the maximum possible velocity, the speed of
light ¢, one finds that even light cannot escape if it gets closer than the Schwarzschild radius r = Ry
to an object of mass M:

2GM ~ £2.95 km

Ry = 2 7 (97)

Schwarzschild radius

in which My is the mass of the sun. Even though this derivation did not use special or general
relativity, it found the same value for the Schwarzschild radius as the relativistic derivations that
led to Eq. (92). An object that has all of its mass confined to a radius smaller than Ry is called
a black hole, since its gravitational field is strong enough to trap even light. In order to become a
black hole, the sun would have to be compressed to a radius of approximately 3 km, and the earth
would have to be compressed to a radius of Rs ~ 1 cm. The boundary r = R is called the event
horizon, since any events that occur inside it can never be observed by or reported to observers
on the outside. Black holes are like Las Vegas-what happens in them stays in them, and they can
both eat a hole in your paycheck too.

Most astrophysical objects do not have enough mass concentrated into a small enough volume for
the Schwarzschild radius to matter. The radius of these objects is much larger than Rs and the
gravitational well levels off inside the objects without ever reaching the bizarre conditions described
on the following pages.
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Both simple calculations (e.g., Newtonian gravitational force —GMm/r?) and full-fledged general
relativistic calculations predict that the gravitational field of a black hole becomes infinitely strong
at r = 0, a point called the singularity. In practice, quantum gravitational effects that are poorly
understood at this time may intervene to prevent the formation of an infinite singularity. In any
event, it is clear that even if someone miraculously survived the trip to the center of a black hole,
they would have a very bad day once they arrived there.

As was described for Fig. 5, light cones point from the past to the future and depict the possible
locations that one could be in the future or that one could have been in the past, given one’s specific
location in the present and the constraint that one cannot travel faster than light. Furthermore,
as was described for Fig. 11, the forward time direction tilts toward the center of a gravitational
field. Therefore, the physics of black holes may be viewed in terms of how light cones tilt over as
one approaches and enters a black hole, as shown in Fig. 18.

(3) At event
light cones ¢
Even light i
fast enough
away from t

(4) Inside event horizon,

(2) Near black light cones tilt over so
hole, light cones far that time and space
tilt and objects (radius) are reversed.
accelerate toward Forward in time is

black hole. automatically toward
the singularity at the
center of the black hole.

(1) Far from
black hole,
light cones
look normal.

Figure 18. Tilting of light cones near a black hole. The horizontal axis is the radial distance
r from the center of the black hole, and the vertical axis is time. (1) Far from the black hole, light
cones are not tilted. (2) Near the black hole, light cones tilt toward r = 0-objects accelerate toward
the hole. (3) At r = R, light cones tilt at a 45° angle in space-time, and even light cannot escape.
(4) For r < Ry, light cones actually tilt so far that time and space (radial position) are reversed,;
forward in time is automatically toward the singularity at r = 0.

As illustrated in Fig. 18, the orientation of a light cone changes as one travels from a point far
away from a black hole to the event horizon and then inside the event horizon:
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1. Far from the black hole, light cones look normal and point vertically from the past to the
future.

2. Near the black hole, light cones tilt toward the black hole and thus objects accelerate toward
the hole; this would be true even in the gravitational field of an object that is not a black
hole.

3. As we have already found, what is unique about a black hole is that even light cannot escape
at the Schwarzshild radius. An equivalent way of viewing this is that at r = Ry, light cones
tilt at a 45° angle in space time. Even light is not fast enough to pull away from there, and at
best it can only follow the yellow arrow in Fig. 18 straight forward in time without climbing
to larger radial distances from the black hole.

4. Inside the event horizon, light cones actually tilt over so far that time and space (radial
position) are reversed. In other words, forward in time is automatically toward the singularity
at the center of the black hole, » = 0, so there is no way to avoid hitting the singularity once
one crosses the event horizon. [Another way to see the interchange of space and time inside
a black hole is to note that in going from r > r, to r < rg, the time and radial components
of the Schwarzschild metric in Eq. (87) both change sign; the time component goes from
negative to positive and the radial component changes from positive to negative. This means
that inside a black hole, space (at least in the radial direction) and time effectively become
interchanged.] For the same reason that space and time are interchanged inside a black
hole, spacelike quantities (e.g. the radial component of momentum) and timelike ones (e.g.
energy) are also interchanged; this fact will play a role in the discussion of Hawking radiation
in Section 6.1.

Objects crossing the event horizon tilt 45° in space-time, just as if they were moving at light speed.
Thus to external observers, the objects appear frozen in time, taking infinitely long to cross the
event horizon. Astronauts entering a black hole would watch the entire future of the universe, then
cross the event horizon and hit the singularity in just microseconds of slowed-down ship time.

If matter from a collapsing star asymptotically approaches the Schwarzschild radius as viewed by
an observer far away, can you really say that a black hole ever forms before the entire history of
the universe is over? Or if a black hole has somehow already managed to come into existence,
can you say that it ever manages to finish acquiring new mass that is falling toward the event
horizon? For these reasons, black holes were sometimes called “frozen stars” in the older physics
literature, especially in the Soviet Union. In practice, within a finite time in the history of the
universe, infalling matter can get close enough to the Schwarzschild radius that radiation from it
is so red-shifted as to be essentially undetectable to an observer far away. Moreover, the infalling
matter is so close to the Schwarzschild radius that an external observer attempting to detect that
matter by coming to sample it would end up joining it on its plunge to the event horizon, which
would occur within a finite time in the frame of reference of an infalling observer.
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Although to an observer far from a black hole, a spaceship falling into the black hole would take
infinitely long to reach the event horizon, the results are quite different as perceived by the crew of
the ill-fated ship. Using increments of shipboard time dtgpi,, people on board the ship would measure
their radial velocity toward or away from the black hole as dr/dtsip. Assuming for simplicity that
the ship falls straight toward the black hole (no angular velocity) and that its velocity is simply
due to the gravitational acceleration (no firing of rocket engines, no kinetic energy when the ship
was far from the black hole), Eq. (94) may be written as:

1 dr 2 GMm
0 = -m — , or
2 dtship r

d 2GM R,
o= 4y = dcq|=2 (98)
dtship T r

Choosing the - sign in Eq. (98) for inward travel (decreasing radial distance from the center of the
black hole) and integrating, one finds the onboard ship time required to fall from an initial radial
distance r to the singularity at » = 0:

2 p3/2 M,
Atship, r—0 = 3 VR = ri{f\/gl.% psec (99)

Note that tgn;, changes smoothly as r crosses the event horizon at Rs. Thus to people on the
spaceship, time continues to advance properly as they approach the event horizon, cross it, and
pass into the interior of the black hole. However, if the people were monitoring signals from the
rest of the universe, they would witness the universe around them rapidly age and pass through its
entire future history before they passed through the event horizon.

Using Eq. (99), the onboard ship time required to fall from the event horizon to the singularity is

2 R, M
Atgp; - — = — 6.56 usec 100

ship, Rs—0 3 ¢ M@ 2 ( )
Therefore once the ship crosses the event horizon, it reaches the singularity within a matter of
microseconds, as measured by clocks on board the ship. As far as is currently known, gravita-
tional fields would become infinitely strong at the singularity. Black holes are not a good vacation
destination.

Subtracting Eq. (100) from Eq. (99), the onboard ship time required to fall from radial distance r
to the event horizon is

2 32— RY? M, M
Atship, r—R, 3 TC\/}TR = Tir/f ﬁ@l.QQ — M—®6.56 psec (101)

From the Schwarzschild metric of Eq. (87), the relation between time ¢, for a distant observer and
time for a ship at radial distance r from a black hole is

dtship

dt _
1—Rs/r

(102)

Thus when r = R,, Eq. (102) blows up and an infinitesimally small increment of ship time dtgpp
corresponds to an infinitely long amount of time for the observer far from the black hole.
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5.3 Stars and Stellar Collapse

Toward the end of its life, after a star has consumed most of the hydrogen in its core, it collapses
and heats up until it is hot enough to fuse the hydrogen that remains in its mantle; this is called
shell burning. The fusion reactions in the mantle cause the surface layers of the star to expand
drastically and cool, resulting in an enormous red giant star. Further contraction and heating of
the core can lead to the fusion of helium and progressively higher elements. In these final stages,
a star often blows off its outer layers.

The remaining stellar core collapses to form one of three objects, depending on its mass M:

1. White dwarf. If M < Myhnite dwarf max, the star contracts until its degenerate electrons’ Fermi
pressure supports it, forming a white dwarf that slowly radiates away its residual energy.

2. Neutron star. If Mypite dwarf max < M < Mpeutron star max, gravity overcomes the Fermi
pressure at the white dwarf stage. The star continues to contract until it squeezes its protons and
electrons together to form neutrons by inverse beta decay. Such a neutron star acts like a giant
nucleus of neutrons and is supported against further collapse by the neutrons’ Fermi pressure.

3. Black hole. If M > Mecutron star max, gravity overcomes even the Fermi pressure of the
degenerate neutrons and the star continues to collapse. The star becomes a black hole once its
radius becomes less than the Schwarzschild radius R;.

The limiting masses Myhite dwarf max aNd Mieutron star max May be estimated in a simple fashion.
Consider a collapsed star with a density n of degenerate fermions. The degenerate fermions are
electrons in a white dwarf and neutrons in a neutron star. For a very dense star that approaches the
appropriate limiting mass, the degenerate particles will have such a large Fermi energy that they
will be relativistic. From the Statistical Physics 7.7, the Fermi energy per degenerate relativistic
fermion is

heN1/3
R )

Ep ~ hen'/? ~ (103)

where n has been estimated from the total number NV of the fermions and the radius R of the star.

The gravitational potential energy per degenerate fermion is roughly

2
Er o~ — GMmper fermion _ Gmper fermionN (104)
G R R )
in which the total mass of the collapsed star has been written as M = Nmper fermion, Where

Mper fermion 15 the amount of stellar mass per degenerate fermion. In a white dwarf composed
of typical fusion products, on average one proton and one neutron accompany each electron, so
Mper fermion = Me + Mp + My, & 2m,,. In a neutron star, most of the mass is in the form of the
degenerate neutrons, so Mper fermion = M-

Thus the total energy per degenerate fermion consists of two terms, both of which vary like 1/R:

heN1/3 Gm? N

per fermion

E ~ FE Eq ~
F+ Lg R R 3

(105)
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The collapsed star will seek a stable equilibrium that minimizes E. If £ > 0 in Eq. (105), the
energy will be decreased by increasing R. Part of the fermions will then become nonrelativistic,
causing the radial dependence of Ef to change to ~ 1/R?. Eventually Eg will begin to dominate
over Fr and the system will reach equilibrium at some finite radius R.

On the other hand, if £ < 0 in Eq. (105), the energy can be decreased without bound by decreasing
R, and the star will be unstable to further gravitational collapse. Setting £ = 0 in Eq. (105), the
threshold for stability occurs at a maximum number of degenerate fermions,

he\ /2 1
Npax = 3 () . (106)
- G m?)er fermion

where the coefficient 3 comes from calculating the Fermi and gravitational energies more precisely
by numerically integrating to determine the density profile [12].

The maximum fermion number is equivalent to a maximum stellar mass of

he\ 3/ 1
Mmax = Nmax Myper fermion ~ 3 <) ngi . (107)

G per fermion

The radius of a stable collapsed star near the limiting mass may be found by inserting Eq. (106)
into Eq. (103) and assuming that the fermions are somewhat relativistic, Ep ~ mf fermionC2 (here
Mof fermion 1S the actual mass of each degenerate fermion):

| h? 1
R ~ 3{/— . (108)
Gc Mot fermion Mper fermion

The factor of 3 in Eq. (108) again comes from more detailed calculations [12].

Applying Eqgs. (107) and (108) to a white dwarf (mof fermion = e, Mper fermion =~ 2My,) produces
Myhite dwarf max =~ 1.5Mo R ~ 10" m 7 ~ 10 g/cm?® White dwarf  (109)

Equations (107) and (108) may also be applied to a neutron star (1mof fermion = Mper fermion = Mn),
although general relativity and other effects lower the maximum mass by about a factor of 2 [12]:

Meutron star max ~ 3Mg R ~ 10*m 7~ 10% g/cm3 Neutron star (110)

Thus white dwarfs have masses up to 1.5Mg), neutron stars are in the range 1.5 — 3M, and black
holes formed from stars have masses greater than 3M,.

Pulsars are particularly interesting types of neutron stars that emit periodic bursts of radiation.
When a star collapses, its magnetic field is compressed and greatly strengthened. Trapped electrons
above the magnetic poles emit narrow beams of cyclotron radiation. A pulsar rotates about an
axis that is different from its magnetic axis, causing beams of cyclotron radiation to sweep the sky
during each rotation. Depending on the pulsar, the cyclotron radiation may be anywhere from
radio to gamma wavelengths, and the rotation period may range from milliseconds to seconds [12].
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How do we know that something as weird as a black hole actually exists? Although we cannot
see inside a black hole, we can see the radiation from matter that is compressed, accelerated, and
heated as it approaches a black hole. The heated infalling matter forms a relatively thin accretion
disk (due to its angular momentum) as it spirals around the black hole. Although a black hole
itself can have no magnetic field, the spiraling infalling matter creates a strong magnetic field, and
accelerated charged particles escaping along the field lines lead to large, intense, polar relativistic
jets. Figure 19 shows a Hubble Space Telescope image of a giant black hole at the center of elliptical
galaxy NGC 4261. Numerous other black holes have been identified and studied.

For more information on stellar structure and evolution, see Plasma Physics and Fusion 5.

Figure 19. Giant black hole at the center of elliptical galaxy NGC 4261. A black
hole’s strong gravitational field heats approaching matter until it glows. We can see that glowing
matter around the black hole, even though we cannot see inside the black hole. Note the upper
and lower polar jets in the left photo, and the accretion disk in the higher-magnification right
photo. Numerous other black holes have been identified and studied. (Public domain image from
http://upload.wikimedia.org/wikipedia/commons/3/3a/Ngc4261.jpg.)
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5.4 Rotating Black Holes

Most stars rotate, so by conservation of angular momentum during the collapse of a star to become
a black hole, presumably most black holes have significant rotation. If a black hole is rotating, it
creates four major effects that are not produced by non-rotating black holes.

A. The first effect is called frame dragging and is depicted in Fig. 20. A rapidly rotating object
with a strong gravitational field (which does not necessarily have to be black hole) can essentially
drag the nearby surrounding spatial region with it in its rotation. Getting the surrounding space to
“move” in the angular direction is equivalent to Lorentz-boosting the space in the angular direction.
The forward direction of time becomes tilted in the angular direction of the object’s rotation, or
in other words light cones are tilted both in the inward radial direction due to the object’s gravity
and in the angular direction of rotation. This introduces off-diagonal t¢ components (assuming ¢
is the direction of rotation) into the metric describing space-time around rotating objects.

(a) (b)
Light cones near Light cones near rotating black hole
nonrotating black hole /}

3 v

“

Figure 20. First effect of rotating black holes: frame dragging. (a) Light cones near a
nonrotating black hole tilt toward the center of the black hole. (b) A rotating black hole twists
the surrounding space-time in the direction of the hole’s rotation, so light cones near the black hole
tilt toward the center of the hole and in the direction of the hole’s rotation. The tilting of the light
cones forces objects near the black hole to orbit in the direction of the hole’s rotation. As the hole’s
speed of rotation increases, the light cones eventually tip over so far that one can travel through
the future of one light cone into the past of the next light cone. In other words, you could travel
into the past by looping the right way around a rapidly rotating black hole. While this time travel
mechanism becomes possible for black hole rotation speeds less than the speed of light, there may
be as-yet-undiscovered physical constraints that prevent this time travel approach.
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B. The second effect caused by black hole rotation is that the singularity is a ring instead of a
point, as illustrated in Fig. 21. The correct radius of this ring singularity can be calculated
even without special or general relativity. As a star collapses to become a black hole, its angular
momentum L = (Mwvr) remains constant, where M is the mass of the star, and the angular position
r and rotation velocity v of the mass have been averaged over the volume of the star. As the star’s
radius shrinks the rotation velocity v increases, just as spinning ice skaters rotate more rapidly
when they pull their arms in. Of course, matter cannot quite reach the speed of light ¢, so the
minimum radius to which all the mass of the star can contract is

L

Rrjng m (111)
Thus all the matter from the star collapses to form a ring with this radius. All the scary math of

special and general relativity gives the same result for those who prefer to do it the hard way.
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Figure 21. Second effect of rotating black holes: ring singularity. (a) Conservation of
angular momentum L = mour means that if slowly spinning ice skaters pull in their arms (radius r
decreases), their velocity v will increase and they will spin more rapidly. (b) Likewise, if a rotating
star with angular momentum L = Muvr collapses to form a black hole (radius r decreases), its
velocity v will increase. However, since v cannot exceed the speed of light ¢, 7 cannot decrease to
form a point singularity as occurs in a non-spinning black hole. The minimum value for the radius
of the singularity occurs when v = ¢, Rying = L/Mc. Thus the singularity forms a ring with this
radius.
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C. The third effect of rotation is that the one event horizon of a nonrotating black hole becomes
two separate inner and outer event horizons for a rotating black hole (Fig. 22). Lots of scary math
[7, 8] yields the radii Revent, + and Revent, — of the outer and inner event horizons:
R Ry\?

Revent,:l: = ?Sj: (28) _nging (112)
The ergosurface indicates the distance from the center where the frame dragging becomes so
strong that even light can only orbit in the direction of the black hole’s rotation. Just as there
are two event horizons, there are two ergosurfaces for rotating black holes, and both are oblate
spheroids. More scary math [7, 8] yields their radii:

Ry R\ ?
.Rergo7 + = ? + \/(2> — Rfing cos2 6 (]_13)

The Kerr metric is the solution for the space-time around a rotating black hole. For no rotation,
Riing = 0, the outer radii in Egs. (112) and (113) become the Schwarzschild radius R, the inner
radii disappear into the singularity at » = 0, and the Kerr metric becomes the Schwarzschild
metric. If a black hole has enough angular momentum, L/mc = Rying > Rs/2, the event horizon
radii in Eq. (112) do not have real solutions and the event horizons vanish, permitting outside
observers to freely see and explore the naked singularity, unless currently poorly understood
physical principles impose cosmic censorship that prohibits the formation of naked singularities.
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Figure 22. Third effect of rotating black holes: inner and outer event horizons and
ergosurfaces. Whereas a nonrotating black hole only has one event horizon, a rotating black hole
has two event horizons as well as two ergosurfaces, within which the frame dragging becomes so
strong that even light can only orbit in the direction of the black hole’s rotation.
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D. The fourth effect is that large amounts of energy can be extracted from rotating black holes.
Figure 23 shows a simple example that was first proposed by Roger Penrose. A spacecraft could
dive into the outer ergosphere of a rotating black hole, jettison its trash into the black hole, and
escape out of the ergosphere. Because a rotating black hole tilts light cones in the ergosphere in
the direction of rotation and energy continues to decrease the deeper one goes into a gravitational
well, if the trash enters the event horizon of the black hole with an angular momentum opposite
that of the black hole, the trash can actually have a negative relativistic energy. Adding a negative
energy to the black hole is equivalent to extracting energy from the black hole. By conservation of
energy and angular momentum, the net energy (mass) and angular momentum of the black hole
decrease, and the energy and angular momentum of the spacecraft increase by the same amounts.
In theory, this process could be repeated to extract all of the rotational energy from a Kerr black
hole until it became a nonrotating Schwarzschild black hole.

Incoming spacecraft Outgoing spacecraft

Trash jettisoned

Outer ergosurface .
into black hole

ergo, +

Black hole
rotation

Outer event horizon

event, +

Figure 23. Fourth effect of rotating black holes: energy can be extracted from a
rotating black hole, as shown in the top view of a Penrose process. A spacecraft can enter
the outer ergosphere of a rotating black hole, jettison its trash into the event horizon opposite the
direction of the black hole’s rotation, and leave the ergosphere with more energy than it originally
had, thereby extracting some of the rotational energy from the black hole.
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In addition to extracting energy already stored in a rotating black hole, one can extract a significant
fraction of the rest energy of an object approaching a black hole, as may be seen by a simple classical
calculation even without special and general relativistic corrections. The total energy E of an object
of mass m in a circular orbit at velocity v = \/GM/r from Eq. (62) and distance r from a black
hole is:

1 M
E:mCQ—i-fva—Gm
2 r
1R
2 s
— " 114
m< 47«) (114)

Equation (114) predicts that an object can come from far away and lose up to 8% of its rest
energy (for example by radiation or collisions) before settling into the closest stable orbit around
a nonrotating black hole, r = 3Ry (see [7]-[11] for the details of orbits around black holes). More
detailed relativistic calculations slightly lower that value to 6%, but that is still much larger than
the ~ 0.7% of rest mass that is converted to energy by the fusion of hydrogen to helium-4 in stars.

However, for a black hole rotating so fast that it is on the verge of having a naked singularity, an
object can stably orbit in the direction of the black hole’s rotation just outside the outer event
horizon at r = Rs/2 from Eq. (112). Equation (114) predicts that an object can come from far
away and lose up to 50% of its rest energy before settling into this closest stable orbit. Relativistic
corrections slightly lower that value to 42%, or seven times more energy than can be derived from
an object approaching a nonrotating black hole. Most black holes are probably rotating more slowly
than this maximal case, so your actual mileage may vary, but the bottom line is that matter falling
into black holes can release ~9-60 times more energy than the fusion reactions that power stars.

This enormous energy source is believed to be the secret of active galactic nuclei, giant rotating
black holes that lie at the centers of galaxies and distant quasars and radiate vast amounts of power,
especially in polar jets perpendicular to the plane of rotation (Fig. 19). Matter spiraling inward
to the black hole forms an accretion disk and is accelerated, compressed, and heated until it emits
X-rays. Although the black hole itself has no magnetic field, it is surrounded by intense magnetic
fields, and the rapid rotation of the black hole converts a significant fraction of the infalling particles’
rest energy to energy radiated in the polar jets, in somewhat the same way that rotating magnetic
coils can produce electrical power in a generator.

Stephen Hawking showed that black holes can only have three distinguishing features visible to
the outside world: their mass M, angular momentum L, and electric charge ). Since black holes
have no other visible features, this finding is often whimsically summarized as “black holes have
no hair.” We have already covered the Schwarzschild and Kerr metrics for uncharged nonrotating
and rotating black holes. The space-time solution for an electrically charged nonrotating black hole
is called the Reissner-Nordstrom metric, and the space-time solution for a charged rotating
black hole is called the Kerr-Newman metric. Solutions for charged black holes are not as
physically relevant as those for uncharged black holes, since a charged black hole would rapidly
suck in particles of the opposite charge until it was approximately neutral. For more information
on the solutions for rotating and/or charged black holes, see [7]-[13].
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5.5 Wormbholes

If you fell into a black hole, you would die in half a dozen different ways. However, with sufficiently
advanced technology it might be possible “tame” a black hole to form a wormhole through which
spacecraft could safely pass. This section will explain each phenomenon that makes a black hole
fatal, then describe theoretical solutions that could eliminate each problem to make a safe wormhole.
For much more detailed information, see [13] and references cited therein.

Problem 1. A black hole does not lead anywhere.

Solution 1. Two black holes could be connected to form a tunnel or wormhole, as shown in
Fig. 24. The wormhole may connect one part of our universe to a different part of our universe,
and the distance through the wormhole may be much shorter than the distance through normal
space. Alternatively, the wormhole may connect two different times together, or it may connect
our universe to another universe.

John Wheeler has suggested that microscopic wormholes may appear and disappear in the “quan-
tum foam” of space-time, so in theory one might nurture one of those to create a larger, long-lived
wormhole. Another possible solution is that quantum gravitational processes may permit two
previously unconnected black holes to link together to create a wormhole.

Figure 24. Wormhole. A wormhole is basically two black holes that connect together to form
a “subway” tube. The wormhole may connect one part of our universe to a different part of
our universe, and the distance through the wormhole may be much shorter than the distance
through normal space. Alternatively, the wormhole may connect two different times together, or
it may connect our universe to another universe. Due to gravitational attraction, the throat of the
wormbhole will pinch off, dividing the wormhole into two unconnected black holes, unless the throat
is actively propped open by negative energy, which would exert gravitational repulsion on the walls
of the wormhole.
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Problem 2. Your time slows down as you approach the event horizon, and the universe ends
before you finally fall in. Even if you could survive the wormhole, there would be nothing to which
you could return.

Solution 2. The event horizon could be eliminated by using the proper distribution of mass/energy
to create the wormhole, instead of having all the mass at the center.

Problem 3. As shown in Fig. 25, electromagnetic waves falling into a black hole gets blue-shifted
to become very high-energy radiation. Starlight gets blue-shifted to higher and higher energies as
it falls into the gravitational field. Even weak radio waves or infrared light becomes intense gamma
rays as it approaches the event horizon. Anyone near or inside the black hole would be fried by the
intense incoming radiation.

Starlight gets blueshifted to higher energies
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Figure 25. Electromagnetic waves falling into a black hole gets blue-shifted to become
very high-energy radiation. Starlight gets blue-shifted to higher and higher energies as it falls
into the gravitational field. Even weak radio waves or infrared light becomes intense gamma rays
as it approaches the event horizon. Anyone near or inside the black hole would be fried by the
intense incoming radiation.

Solution 3. The event horizon and the accompanying blue-shifting of infalling radiation could be
eliminated by using the proper distribution of mass/energy to create the wormhole, as in Solution
2.

Problem 4. Tidal forces rip you apart long before you reach the center, as shown in Fig. 26.
The gravitational field increases (there is a gravitational gradient) as one approaches a black hole.
Sufficiently close to the black hole, the gravitational field can be much stronger in one place even
than the field a meter or two further away from the black hole. These tidal forces stretch any object
falling into the black hole until they tear it apart. Smaller black holes pack their gravitational fields
into a smaller space than larger black holes, so the tidal forces are much worse near a small black
hole than at the same distance from a large black hole.

Using the Newtonian approximation a = GM/r? for simplicity, the difference in gravitational
acceleration across an object of width Ar,, in meters is
da GM
Aa = Arp|—| = 2Ar, —— (115)
dr r3

From Egs. (97) and (115), the tidal acceleration difference at the Schwarzschild radius is

Mo\ 2 m Mo \?
Aa = 1.03 x 10 (M@) Arp —5 = 1.05 x 10° (J;) Arm g, (116)
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where g &~ 9.807 m/sec? is the gravitational acceleration at the earth’s surface. Thus the difference
in acceleration between the head and feet of a person (Ar,, =~ 2 m) passing the Schwarzschild
radius of a black hole of one solar mass is 2 x 10° g. A person would be turned into spaghetti long
before they reached the Schwarzschild radius.

Weaker gravity further * * *

away from black hole

Stronger
gravity
closer to
black hole

Figure 26. Tidal forces near a black hole. The gravitational field increases (there is a
gravitational gradient) as one approaches a black hole. Sufficiently close to the black hole, the
gravitational field can be much stronger in one place even than the field a meter or two further
away from the black hole. These tidal forces stretch any object falling into the black hole until they
tear it apart. Smaller black holes pack their gravitational fields into a smaller space than larger
black holes, so the tidal forces are much worse near a small black hole than at the same distance
from a large black hole.

Solution 4. The larger the hole is, the smaller the gravity gradients and tidal forces will be.
For example, in Eq. (116), if the hole has 46,000 solar masses, the acceleration difference on a
person will be less than 1 g at the Schwarzschild radius. Distributing the mass/energy creating the
wormbhole instead of concentrating it all at the center could also greatly help, just as it might help
to solve problems 2 and 3.

Problem 5. You cannot avoid hitting the singularity at the center.

Solution 5. While section 5.2 showed that it is impossible to avoid hitting the singularity of a
nonrotating black hole, section 5.4 showed that the singularity of a rotating black hole is a ring.
Thus you can travel from the outside world to the center of the hole without hitting the ring
singularity, especially if your trajectory is not in the plane of the ring. Alternatively, wormholes
might have the correct distribution of mass/energy to eliminate the singularity entirely. Another
possibility is that the singularity might exist only as the final state of the wormhole in the far
future, so you can avoid it as long as you do not remain inside the wormhole too long.
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Problem 6. Due to the gravitational attraction of itself, or of anything passing through it, the
throat of the wormhole will pinch off, dividing the wormhole into two unconnected black holes
before anything can make it through.

Solution 6. Once could use the gravitational repulsion (antigravity) of negative energy to repel the
walls of the wormhole and hold the wormhole’s throat open, as shown in Fig. 24. Fig. 27 illustrates
one way to create such negative energy. In quantum vacuum fluctuations, photons, electrons,
positrons, or other particles can appear from nowhere, then disappear again. The Casimir effect
is a way to create negative energy, or less energy than the vacuum. Whereas any electromagnetic
wave can appear in the vacuum, only waves meeting the boundary conditions can appear between
two parallel metal plates. In other words, if the vacuum contains the usual amount of nothing,
then there is less than nothing between the plates. The pressure of the usual amount of nothing in
the vacuum will overcome the pressure of the less than nothing between the plates and push the
plates together. Other ways to create negative energy include squeezed light, moving mirrors, etc.
[13].
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Figure 27. An example source of negative energy to hold wormholes open. (a) In
quantum vacuum fluctuations, photons, electrons, positrons, or other particles can appear from
nowhere, then disappear again. (b) The Casimir effect is one way to create negative energy, or less
energy than the vacuum. Whereas any electromagnetic wave can appear in the vacuum, only waves
meeting the boundary conditions can appear between two parallel metal plates. In other words,
if the vacuum contains the usual amount of nothing, then there is less than nothing between the
plates. The pressure of the usual amount of nothing in the vacuum will overcome the pressure of
the less than nothing between the plates and push the plates together.



Special and General Relativity 55

6 Quantum Effects in General Relativity

Quantum effects can cause interesting modifications to general relativity, some of which can be
predicted even without a complete theory of quantum gravity. In this section we will consider
three effects: Hawking radiation from black holes, the Planck scale, and the cosmological constant
or vacuum energy. For more information on quantum gravity and its theoretical difficulties, see
Relativistic Quantum Field Theory 5.

6.1 Hawking Radiation from Black Holes

Hawking radiation is a quantum mechanism by which matter or energy can actually escape from
black holes. According to quantum theory, pairs of virtual particles and antiparticles continually
appear from the vacuum and then promptly annihilate with each other and disappear. As shown
in Fig. 28, Hawking radiation occurs when such a particle-antiparticle pair appear just outside
a black hole’s event horizon and one member of the pair crosses the event horizon and becomes
trapped in the black hole; without a companion with which to annihilate, the other particle (or
antiparticle) freely continues to exist and appears to have been “emitted” by the black hole.

Antiparticl
escapes

Particle & antiparticle
annihilate each other

Time (far from black hole)

Particle-
. . antiparticle
Radial distance r from pair created

center of black hole

Figure 28. Hawking radiation. In empty space, particle-antiparticle pairs continually appear
and then annihilate each other. If a pair appears near the event horizon of a black hole, one member
may fall into the black hole, allowing its partner to escape annihilation. To outside observers, the
escaping particle or antiparticle appears to have been emitted by the black hole, and the mass of
the black hole is reduced accordingly.
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Specifically, consider the pair creation of two photons, one with four-momentum (+pc, —p) and
the other with (—pc, +p); the net four-momentum of the two photons is thus zero. The first
photon has the correct positive energy appropriate for its momentum and could therefore continue
to exist indefinitely if it did not annihilate with the other photon. However, the second photon’s
negative energy prevents it from being a permanent “real” particle, and so it can only exist for a
time At ~ h/pc. If during that brief time it crosses the black hole’s event horizon, it will enter a
region where spacelike and timelike vectors are interchanged; this converts the photon’s previously
unacceptable negative energy —pc into an acceptable momentum, and its previous momentum into
an acceptable positive energy. Therefore the photon becomes a real particle inside the black hole.
When the photon was outside the event horizon, it had a negative energy; by crossing the event
horizon and adding this negative energy to the black hole, energy has effectively been removed from
the black hole. This energy compensates for the energy needed to create the other (positive-energy)
photon and ensures that energy is conserved in the long run.

The emission of photons makes the black hole appear to be radiating like a black body with a
certain temperature, which may be calculated. Because photons may be emitted from any part of
the event horizon, whose dimensions are described by the Schwarzschild radius R, the momentum
of emitted photons is uncertain by an amount Ap,
h h
Ap ~ — = ——— . 117
P~ R, T 2aM/2 (117)
This uncertainty in momentum (or photon energy Apc) can be characterized in terms of thermal
fluctuations at a temperature T' (with k, defined as Boltzmann’s constant):

k.T
Ap ~ ~E- (118)
c
Equating these two expressions for Ap and solving for T" yields
hic3
T ~ ——— . 119
2k, GM (119)
This result is within a factor of 47 of the result of Hawking’s much more rigorous derivation,
I3 3
T = m Hawking temperature of a black hole’s event horizon (120)
Due to the black-body-like Hawking radiation, a black hole loses energy at a rate
d(Mc?) 2 4 -2
= (47R2) (05, T") o< M2, (121)

where o, = (27°k%)/(15R3¢%) ~ 5.67 x 1078 W/(m? °K*) is the Stefan-Boltzmann constant. Thus
smaller black holes have higher temperatures and lose energy more rapidly than larger ones. Very
small black holes should completely evaporate in one final explosion of Hawking radiation, unless
other presently unknown quantum gravity effects intervene.

Integrating Eq. (121) and rearranging, the time for a black hole of initial mass My to evaporate
via Hawking radiation is:

51207 G? M,
Tevaporation = 71\4(:)3 ~ 10 (10110kg

Thus a small black hole of ~ 10! kg or less created early in the 13.7-billion-year history of the
universe would evaporate by now, but more typical black holes of stellar mass would require far
longer than the life of the universe to evaporate.

3
) billion years (122)
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6.2 Planck Scale

The point at which general relativity and quantum physics collide head-on is defined by the Planck
scale. Estimated values for the Planck scale can be found via the following hogwash argument.

A particle-like object of mass M creates gravitational effects which come with an associated length
scale, the Schwarzschild radius: Rs = 2G M /c?. Similarly, such an object exhibits quantum effects
on a length scale of the Compton length, r, = h/Mec.

Quantum effects dominate over gravitational effects when r, > R;, as it is for elementary par-
ticles. Gravitational effects dominate over quantum effects when Ry > 7., as is the case for
macroscopic astronomical objects. However, both gravitational and quantum effects must be taken
into consideration when Rg ~ r, or equivalently when

M ~ Mp = /he/G ~ 2.18-10%kg Planck mass (123)

Related quantities may also be defined:

Ep = Mpc® =~ 122-10 GeV Planck energy (124)
Lp = h/Mpc ~ 1.62-107% m  Planck length (125)
Tp = Lp/c =~ 539-107*"sec  Planck time (126)

Note that the Planck scale is far beyond anything which humans can presently achieve. The Planck
mass is far greater than the masses of any known particles, the Planck energy is far higher than
conceivable particle accelerators can attain, and the Planck length and time scales are far smaller
than can currently be resolved. But if you could ever reach the Planck scale, you would need
a full-fledged theory of quantum gravity to describe things. Unfortunately that doesn’t seem to
be coming anytime soon. See see Relativistic Quantum Field Theory 5 for more details on the
headaches of quantum gravity theories.

At present, the best guess of what happens at the Planck scale is that there are chaotic quan-
tum fluctuations in space-time, such that the very notion of measurable space and time coordinates
breaks down. When viewed at this very fine scale, the smooth “rubber sheet” of space-time may ac-
tually be a quantum foam of space-time bubbles and microscopic wormholes continually appearing,
rearranging, and disappearing.
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6.3 Vacuum Energy and Cosmological Constant

The most general form of Einstein’s equation includes a cosmological constant A:

8rG
G#V + Ag/“’ == 7TNV . (127)

In theory a nonzero cosmological constant could be caused by quantum vacuum energy effects.
The cosmological constant appears to be zero now, but in the very early universe it may have been
nonzero and caused an exponential inflation of the size of the universe, as will be discussed later.

The cosmological constant can be absorbed into the stress-energy tensor by introducing terms for
the quantum vacuum energy density and pressure [13]:

T;tfljtal — Tsf/andard + T/\ﬁjcuum (128)
in which
A
0 0 0
vacuum CQA ST(F)G - 80427‘ 0 0
= T T 0 0 e 129
0 0 o c'A

" 8nG rectangular, flat space

Thus the quantum vacuum effects modeled by the cosmological constant act like a gas with a
positive energy density,

p.ct = c'A/8nG (130)

(assuming A > 0), but a negative pressure,

p, = —c'A/87G . (131)

The vacuum energy density is determined by fundamental quantum physics considerations and
cannot change if the vacuum energy’s volume is changed. The negative pressure, while sounding
strange, ensures that if the volume occupied by the vacuum energy increases by an amount dV,
the associated work dW = —pdV will be sufficient to provide the energy needed to create more
vacuum energy to fill the new volume.
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7 Cosmology

One of the major applications of general relativity lies in the field of cosmology [14]-[17]. General
relativity may be used to derive equations modeling the structure and history of the universe.

7.1 Observational Data about the Universe

There are several observed characteristics that must be part of any realistic model of the universe,
either as fundamental assumptions on which the model is founded or as theoretical predictions of
the model that support its validity.

The composition of the universe at present appears to be ~5% matter, ~23% dark matter,
~0.006% radiative energy, and ~72% dark energy, although the relative amounts and importance
of these components has changed throughout the history of the universe:

e Matter is ordinary particles like protons, neutrons, and electrons, a few oddball particle
types like neutrinos (see Relativistic Quantum Field Theory for more information), and black
holes into which matter has collapsed. Most of the matter is in the form of stars, which
are generally surrounded by much smaller amounts of matter in the form of planets and
such. Stars are grouped into galaxies. An average galaxy has ~ 10!! stars, and there are
at least ~ 10!! galaxies in the observable universe. Not counting heavier elements that have
subsequently been produced in stars, matter dating from the origin of the universe is ~ 75%
hydrogen and ~25% helium-4 by mass, as will be explained by Big Bang nucleosynthesis
in Section 7.5.

e Dark matter exerts a gravitational attraction like normal matter yet appears to be composed
of something other than the known particles, is very difficult to detect directly, and thus is
currently poorly understood. Evidence for dark matter includes: (1) The rotation velocities
of many galaxies indicate a gravitational pull from ~5x more matter in those galaxies than
all their visible stars plus the expected number of planets, white dwarfs, neutron stars, and
black holes. (2) Gravitational bending of light by some galaxy clusters is also ~5x greater
than should be caused by all the visible stars plus the expected number of planets and burned
out stars.

e Radiative energy is generally electromagnetic radiation or photons, spanning the spectrum
from radio waves to visible light to X-rays, and played a much more important role in the early
history of the universe, when the universe was much smaller and hotter. Most of the radiative
energy is in the form of cosmic microwave background radiation, which began as high-
temperature thermal radiation in the earliest phases of the universe and has subsequently
cooled to the microwave regime, as shown in Fig. 29.

e Dark energy, also known as vacuum energy or the cosmological constant (Section 6.3), is a
form of energy that permeates all space in the universe and exerts an antigravitational effect,
trying to push the universe apart instead of pull it together. Dark energy may arise from
various quantum effects, none of which are well understood, and in fact multiple forms of
dark energy may have played different roles at different times in the history of the universe.

The cosmological principle is the assumption that the universe is homogenous and isotropic —
it basically looks the same everywhere and in all directions. It has the virtue of simplicity, and it is
supported by astronomical observations such as the isotropy of the cosmic microwave background
radiation.
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Figure 29. The measured spectrum of cosmic microwave background radiation cor-
responds almost perfectly to black-body radiation with a temperature of 2.7°K. The
actual error bars are so small that they have been multiplied by a factor of 400 just to make them
visible on the graph. [Data from COsmic Background Explorer (COBE) satellite’s Far InfraRed
Absolute Spectrophotometer (FIRAS) instrument.]

Distances to nearby stars can be measured via parallax; the angle from earth to a star changes
as the earth moves from one side of the sun to the other, just as our two eyes separated by a
certain distance can judge distances to objects. To measure distances so great that parallax is
negligible, astronomers use the apparent brightness of stars of known intensity, since the apparent
brightness is proportional to (distance)™2. As examples, the pulsation rate of Cepheid variable
stars depends on their intensity in a known fashion, type la supernovae all have the same intensity
because they occur when white dwarfs acquire extra matter and exceed a specific critical mass, and
Hertzsprung-Russell diagrams (Plasma Physics and Fusion 5.5) plotting the intensities and peak
emission wavelengths of all the stars in each galaxy fall along the same known curve. The nearest
stars to our sun are several light-years away, our galaxy (the Milky Way) is ~ 100,000 light-years
in diameter, other galaxies range from a few million to several billion light-years away from ours,
and the furthest detectable objects are ~ 13 billion light-years away.
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Ages of stars can be estimated by their luminosities, surface temperatures, and composition (via
spectroscopy), which indicate their consumption rate and how much of their hydrogen they have
consumed to form helium and heavier elements via nuclear fusion (see Plasma Physics and Fusion
5 for more information). The ages of stellar remnants such as white dwarfs can be estimated from
their surface temperature and cooling rate. Our sun formed approximately 4.5 billion years ago
and is roughly halfway through its life cycle. The oldest detectable stars and stellar remnants in
the universe are ~ 13 billion years old. This agrees with the furthest visible objects in the universe
being ~ 13 billion light-years away, since light would have left them ~ 13 billion years ago to reach
us on earth now. It also agrees well with the age of the universe from Hubble’s law (below).

Velocities of stars relative to the earth can be measured by Doppler shifts of known spectral lines
for hydrogen, helium, and other elements in stars. Stars moving toward us compress their emitted
electromagnetic waves and thus appear blue-shifted, whereas stars moving away from us stretch
out their emitted electromagnetic waves and appear red-shifted. From FElectromagnetism 7.7, the
Doppler shift of a star moving away from us at velocity v < ¢ will lengthen its emitted wavelengths
A by an amount A\, often denoted in cosmology by the ratio z:
_ AN v
P= =

Special relativity would introduce corrections to Eq. (132) for velocities approaching the speed
of light, but those corrections can be safely ignored for most velocities measured in cosmology.
Additional corrections are also introduced if the speed of a star relative to our location has changed
over the history of the universe, but those will also be ignored here for simplicity.

(132)

Hubble’s law. All galaxies (or clusters of galaxies) in the universe appear to be moving away from
each other with a velocity v proportional to the distance d between the galaxies, v = Hd, where
H is Hubble’s constant, as shown in Fig. 30. (Hubble’s constant is approximately constant right
now, but in general it varies with time during the history of the universe, so we use Hy to denote
its current value.) This observation is known as Hubble’s law and may be attributed to stretching
of the cosmic scale factor R (a measure of the size of the universe):

dR/dt
H(t) = . 133
0 = T (133)
The best current estimate for the Hubble constant is
k
Hy o~ 71 /50 93 10718 gee! , (134)
Megaparsec

in which 1 Megaparsec ~ 3.262 x 10° light-years ~ 3.086 x 10?2 m.

Extrapolating backward in time from Hubble’s law, the universe appears to have started in a Big
Bang. Without knowing the details of how the universe has accelerated or decelerated during its
past history, one can use the current expansion rate to make a rough estimate of the universe’s age.
Assuming constant expansion at the current rate, the current age ty of the universe is

ty = 7 ~ 435 x 1017 sec ~ 13.8 billion years (135)
0

As we will see in Section 7.5, this very simple estimate is almost exactly the correct answer. It also
agrees well with the oldest stellar ages and furthest distances we can measure.
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As shown in Fig. 30(b), the universe seems to be stretching uniformly everywhere, rather than
expanding outward from one central point in three-dimensional space. General relativity is required
to accurately model the uniform expansion of space-time, as will be done in Section 7.4. Yet even
simple Newtonian calculations of three-dimensional expansion can yield correct answers if handled
correctly, as will be shown in Section 7.3. Note that the red shift of a distant galaxy can be
interpreted either as a Doppler shift due to that galaxy’s relative velocity away from us, or as
stretching of the wavelengths since empty space itself has stretched while the electromagnetic waves
were in transit from that galaxy to us. The two views are equivalent, since the relative velocities
of galaxies are caused by the stretching and expansion of the universe.
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Figure 30. Hubble’s law. (a) Numerous astronomical measurements indicate that galaxies
(or clusters of galaxies) in all directions are moving away from our galaxy with velocities directly
proportional to their distance from us—the further away they are, the faster they are receding. (b)
Assuming that we are not by some wild coincidence located at the center of the universe, all parts
of the universe should see this same effect. This means that the whole universe is “stretching”
uniformly everywhere, rather than objects rushing outward from a central point in space.
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7.2 Structure of the Universe

In deriving the structure of the universe from scratch, we will use the cosmological principle that
the universe is homogenous and isotropic—it basically looks the same everywhere. In accordance
with the cosmological principle, the large-scale curvature of space-time will be assumed to be the
same at all spatial locations in the universe.

To further simplify matters, we will leave time out of things for now and just consider a snapshot of
how the space-time structure of the universe looks at some fixed time ¢. As explained in Section 2.3,
gravity can warp our three-dimensional space into an extra (fourth) spatial dimension w, sometimes
called the embedding dimension since our three dimensions are embedded in that extra dimension
that we cannot directly see. Due to the assumptions that the universe is isotropic, homogeneous,
and has the same space-time curvature everywhere, we are led to consider the universe as a three-
dimensional surface of revolution in four dimensions:

Pﬁ _ 2 2 ,.,2, .2 _ 2, 2

k—w—l—:c—i—y—i—z—w—i—r. (136)
in which R?(t)/k is the square of the radius of curvature of the universe. R(t) is a scale factor which
can vary during the history of the universe, and k, the sign of the squared radius of curvature, has
three possible values, as illustrated in Fig. 31:

k = +1. For this choice of k, the curvature has a real value and Eq. (136) describes
a three-dimensional spherical surface embedded in a four-dimensional Euclidean (all
dimensions real, not imaginary) space. This is called a closed universe, since you can
head off in what appears to be a straight line and eventually come back to the same
position, circumnavigating the universe like a cosmic Magellan.

k = —1. For this choice, the radius of curvature has an imaginary value—our three
real-valued spatial dimensions curve into an imaginary fourth embedding dimension
w. Equation (136) becomes 72 + w? = —R? or, written in a more revealing form,

—r2 —w? = R%. If only r? were negative, this would be the equation for a three-

dimensional hyperboloid surface embedded in a four-dimensional Euclidean space. But
w? is also negative, which confirms that the embedding dimension is imaginary with
respect to the three spatial dimensions. Thus & = —1 corresponds to a universe which
is shaped like a three-dimensional hyperboloid surface embedded in four-dimensional
Minkowski space. Note that there are now two imaginary dimensions running around
(time and the spatial embedding dimension) and that each one can be combined with
the normal three spatial dimensions to make a Minkowski space. Don’t confuse the two.
Anyway, although this type of universe has the same nonzero curvature everywhere, it
curves in a funny way such that a “straight-line” trajectory never comes back to where
it started, unlike the situation with & = 41. Therefore the case kK = —1 is called an

open universe.



64 Special and General Relativity

k = 0 describes a flat universe whose space is purely Euclidean and not warped into
an embedding dimension. Don’t worry about the fact that k = 0 means that we’re
actually dividing by zero in some of the equations here. k = 0 just means that R?/k is
infinite, and the surface of a sphere of infinite radius is effectively a flat plane.

As will be discussed in Section 7.5, the flat k¥ = 0 case appears to describe our universe. For
generality, we will continue to consider cases in which £ might assume the other values, but in
practice we probably don’t have to worry about our universe being curved in weird ways.

(a)

(b)

(c)

Figure 31. Four-dimensional shape of the universe for various values of k. (a) If k = +1,
the universe is curved into a real fourth spatial dimension to form a closed sphere. Traveling in
what seems like a straight line in three dimensions will eventually return you to your starting point.
Due to the curvature, the sum of three angles in a triangle will actually be more than 180°. (b)
If £k = —1, the universe is curved into an imaginary fourth spatial dimension in such a way that it
never closes back on itself. This universe is uniformly curved everywhere, but because the mix of
imaginary and real dimensions cannot be accurately depicted in real dimensions here, the k = —1
universe appears distorted into a saddle shape here. Due to the imaginary curvature, the sum
of three angles in a triangle will be less than 180°. (c) If & = 0, the universe is “flat” with no
curvature into a fourth spatial dimension. The sum of three angles in a triangle is 180°. (Public
domain figure from http://upload.wikimedia.org/wikipedia/commons/9/98/End_of_universe.jpg.)
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Eq. (136) can be used to calculate the space-time metric of the universe. Differentiating Eq. (136)
while holding time (and thus R(t)) constant yields w dw = —r dr, since dR = 0. Squaring this
result produces w?dw? = r2dr?, which may be combined with Eq. (136) to obtain an expression
for dw?:

r2dr? r2dr?

2 _ —
dw’ = —o = s (137)

This expression for dw? may be substituted into the metric:

ds®* = —c*dt® + dr? + r2(d6* + sin® 0d¢?) + dw?
r2dr?
R2 2

= —c2dt* + dr? + r*(d6? + sin® 0do?) +

R2dr?

m + 7‘2(d92 + Sil’l2 9d¢2) .

= —Adt* +
Changing to a rescaled variable ' = r/R, this becomes the Robertson-Walker metric for a
homogeneous, isotropic universe:

dTIZ
1 — kr'?

ds* = —c*dt* + [R(t)]? [ + 72(db? + sin® 9d¢2)] Robertson-Walker metric (138)

Equivalently, the Robertson-Walker metric written in tensor form (using ' as the radial coordinate)
is:

-1 0 0 0
_R%
Juv = 0 (l_sz) 20/2 ’ (139)
0 0 R2r 0
0 0 0  R2%'2sin%6

spherical

k = 0 appears to describe our universe the best, in which case Eq. (139) reduces to the metric
for flat space-time, except the three spatial dimensions can be expanded by a factor R without
affecting the time dimension.
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7.3 Time Development of the Universe—Helpful Hogwash Version

Before deriving the equations for the time development of the universe via rigorous (and mathe-
matically complex) general relativistic methods, the same equations will first be derived by simple
Newtonian arguments in order to gain some physical insight.

First energy conservation equation

As shown in Fig. 30(b), the universe seems to be stretching uniformly everywhere, rather than
expanding outward from one central point in three-dimensional space. General relativity is required
to accurately model the uniform expansion of space-time, as will be done in Section 7.4. Yet even
simple Newtonian calculations of three-dimensional expansion can yield correct answers if handled
properly. At a sufficiently macroscopic scale, the individual galaxies and other objects that make
up the universe may for simplicity be treated as part of a continuum the same way that the particles
in a fluid may be modeled as a continuum. This simplification is known as Weyl’s postulate.
Mathematically, this means that the universe’s contents may be modeled as a gas with average
density p and pressure p.

To begin the Newtonian calculations, we will consider a test particle of mass m at the “edge” of
the universe, a distance R from the “center” of the universe. The particle’s total energy E is the
sum of its positive kinetic energy and negative gravitational potential energy:

1 M
=l - G (140)

The particle’s velocity relative to the “center” of the universe is the same as the expansion velocity

of the “edge” of the universe, IR
v=—=R. 141
o (141)
To avoid clutter in equations, we will use overhead dots to denote time derivatives—one dot denotes
the first derivative with respect to time, two dots denote the second derivative, etc.

The mass M attracting the particle is all of the matter closer to the “center” than the particle is,

4
M = g7rR3p . (142)
The energy E may be incorporated into a new quantity k:
2F
L = — 143
3 (143)

The quantity k is a constant because all of the components of its definition are constants. However,
since the mass m of the test particle is arbitrary, only the sign of k really matters. For this reason,
one may limit discussion to only the values k¥ = —1, 0, +1. As will be shown in Section 7.3 by
arguments from general relativity, this quantity is the same k that specifies the curvature of the
universe, as was discussed in Section 7.1:

k = +1 in Eq. (143) means that the test particle’s energy is negative, so it (and the
other things in the universe) will not have enough energy to escape the gravitational
pull of the universe; in this case the universe will eventually stop expanding and collapse
back on itself.

k = —1 in Eq. (143) implies the test particle’s energy is positive, so it (and everything
else in the universe) can continue moving outward indefinitely.
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k = 0 marks the boundary between these two outcomes; for £ = 0 the universe will just
barely be able to continue to expand indefinitely and avoid gravitational collapse.

Substituting Eqgs. (141)-(143) into (140) and rearranging, one finds

R? 2 871G

2 + % k = TFT p First energy conservation equation (144)
Despite the scary appearance of Eq. (144), it still means simply that the total energy of particles in
the universe is conserved, just as Eq. (140) does. The unusual arrangement of Eq. (144) facilitates

comparison with the general relativistic result that will be derived in Section 7.3.
Critical density
By using v = R = HR, Eq. (140) may be written as

4 3H? 4
E = - Ne=—=-p) = - ? (Perit — p) - 14
37erR (87TG p) 37erR (Perit — p) (145)
in which the critical density is
3H?
cri = 146
Perit —e (146)

The value of the density relative to peit is closely related to E and k:

p < pait & FE>0and k= —1 open universe (expands indefinitely)
p = puait > F=0and k=0 flat universe (just barely expands indefinitely)
p > pait — £ <0 and k=41 closed universe (eventually collapses) (147)

Second energy conservation equation

As the universe expands, its volume V increases by an amount dV, and it does an amount of
work pdV. The energy of the universe must decrease by a corresponding amount d&l = —pdV.
Assuming that the universe is expanding much more slowly than the speed of light (as the measured
Hubble constant indeed indicates), the energy of the universe is just the rest energy of its matter,
so dE = d(pV)c?. These concepts lead to a relationship between p and p for the universe:

%E = —p%v (148)
— 2L = o) (149)
= )= —3§(p+§) (150)
Combining Egs. (144) and (150), one finds
2§ + gz + ;:2 = — 8:—2Gp Second energy conservation equation (151)

Again, despite its scary appearance, Eq. (151) still just means that the total energy in the universe
is conserved, just as Eqgs. (144) and (148) do. The strange form in which Eq. (151) is written will
aid comparison with the result to be derived from general relativity in Section 7.3. Equation (151)
is directly related to Eq. (144) by the connection between density and pressure in Eq. (149).



68 Special and General Relativity

7.4 Time Development of the Universe—-Scary Math Version

Now the general relativistic derivation for the time development of the universe will be presented.
The strategy of the derivation is first to calculate the stress-energy tensor 7}, for a universe-
filling “gas” using the Robertson-Walker metric g, from Eq. (139), then to work out the Einstein
curvature tensor G, corresponding to the Robertson-Walker metric. When Einstein’s equation
(127) is used to relate these expressions for T),, and G, the result is equations for the time
dependence of R, the scale factor of the universe.

The stress-energy tensor 7}, for a gas with density p and pressure p from Eq. (44) (using v, = v, =
(c,0,0,0) assuming the gas particles are at rest in their local reference frames) may be adapted for
the Robertson-Walker metric from Eq. (139):

pc? 0 0 0
2
P 0 (&) o 0
T, = + ) vV, + v L—kr 152
g (p )" P 0 0  pR%" 0 (152)
0 0 0 pR?r'"? sin% @

spherical

Starting with the Robertson-Walker metric from Eq. (139) and the definitions of Section 3.1, one
can muddle through lots of scary algebra to sequentially work out the corresponding Christoffel
symbol Faﬁv, Riemann curvature tensor Raﬁvé’ Ricci curvature tensor R, Ricci curvature scalar
RRicci scalar (using the name in the subscript here to avoid confusion with the scale factor of the
universe R), and ultimately the Einstein curvature tensor G,

1 R
'y = 'y = —g"! = —; te. 1
01 10 59 9110 Re etc (153)
R
Rlgg = Rlgy = Rigy = R R0 = 0; etc. (154)
—3-5, 0 0 0
2k+RR/2+2R?/c?
P L e =y 0 0
n 0 0 r? (2% + B 4+ 22 0
2 2 RR R?
0 0 0 r'# sin 9(2k+7+2?)
(155)
6 RR R?
RRicci scalar = g“”RW = *ﬁ <k+62+62> (156)
R? k k+2RR/? + R?/c?
GOO = 3@ + 3@ and Gll = — 1—kr’2 . (157)
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Applying Einstein’s equation Eq. (127) (with the cosmological constant A included) to the time
(00) and radial (11) components of T}, and G, yields two equations:

R2 2 2 8rQ
2 + % k — %A = %p First Friedmann-Lemaitre equation (158)
R R? c? 9 8rG
2 = + = + i k—cAh=——p Second Friedmann-Lemaitre equation (159)
c

These equations confirm the results of the Newtonian derivation from Eqs. (144) and (151), except
that they also account for the possibility of a cosmological constant A. They verify that the net effect
of the cosmological constant is to contribute an effective positive energy density p,c? = ¢2A/87G
to the total energy density and an effective negative pressure p, = —c?A/87G to the total pressure,
as was predicted in Egs. (130) and (131). As with Eqgs. (144) and (151), Egs. (158) and (159) are
glorified energy conservation equations that are directly interrelated via Eq. (149) connecting the
density p to the pressure p.

Equations (158) and (159) may be combined to find the deceleration of the cosmic scale factor:

R _ AnG 3p A _ AnG 3p
R- 3 (pw‘m;) = (e E ) (160)

Substituting R = HR into Eq. (158) and solving for k confirms the critical density found earlier
in Egs. (145) and (146):

k:

(,0 + Ppr — pcrit) ) (161)

3c2 8rG 871G 3c2

8TGR? ( A 3H2> 87GR?
p + =

in which peis = 3H?/87G as in Eq. (146) and p, is the contribution from the cosmological

constant/vacuum energy. The density p could be subdivided into the density contributions pmatter

from matter (both regular matter and dark matter) and p;,q from electromagnetic radiation. What

matters in Eq. (161) is the sum Xp = pmatter + Prad + p,. As before, the universe is closed with

k= +1 for Xp > peit, flat with k = 0 for Xp = perit, and open with £k = —1 for Xp < perit-

Hardcore cosmologists like to define the ratios of the total and component densities to the critical
density:

0 = 2~ Opagpey = Pmatter Qg = Prd 0, = Lo (162)
Perit Perit Perit Perit
Q = Qmatter+Qrad+QA (163)

Using these definitions, Eq. (161) may be rewritten as

Q) -1 = - (164)
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7.5 History of the Universe

The history and age of the universe depend on how much stuff there is in the universe, and whether
that stuff is primarily matter (either regular matter or dark matter), electromagnetic radiation,
vacuum energy, or some combination of these. Our universe appears to have experienced different
eras when different components dominated its expansion, as shown in Fig. 32. We will consider
these different eras separately in the following pages.

Empty universe

In an expanding but empty universe with negligible density, pressure, and vacuum energy (p = 0,
p =0, and A = 0), there is no gravitational attraction to alter the speed of expansion over time,
and Eq. (160) yields

R=0 — R(t) = Hyt . (165)
Thus if the universe is empty, its current age is
1
ty = — = 13.8 billion years (166)
Hy

just as in Eq. (135). This appears to be almost exactly the right answer for our universe, but for
the wrong reason. Observational data indicates that our universe is far from empty, and in fact is
filled with a density right at the critical value pepit. Thus we will now turn our attention to cases
in which the universe is filled with matter, radiation, vacuum energy, or combinations thereof.

<100,000
years
Radiation
domination

Size of the universe R

Y Age of the universe ¢ Now (¢))
<102 sec 13.7 billion years
Vacuum energy
domination
(inflation)

Figure 32. The expansion of the size of the universe R with time ¢ has been dominated
first by vacuum energy (inflation), then radiation, then matter, and now a different
form of vacuum energy (dark energy). For comparison, the dashed diagonal line shows an
empty universe that expands at a constant rate.
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Matter dominance

For most of the 20th century it was believed that our universe was dominated by matter. If radiation
may be neglected, the total mass of the universe is conserved,

4 4
§7TR3pmatter = gﬂ'Rngatter 0> (167)

where Ry and pmatter 0 are the current scale factor and matter density (ordinary matter plus dark
matter, whatever the heck that is).

Using Eq. (167), Eq. (158) may be rewritten as:

87rGR3pmatter 0

=
3R

1
+ §Ac2R2 — %k (168)
Equation (168) may be integrated to find the time dependence of R for various values of k and A.
The simplest case to solve is that of a flat universe (k = 0) and with no vacuum energy (A = 0),
which is called the Einstein-de Sitter model for the universe. For this case the solution is

R(t) = (67TGR8,0matter 0)1/3 t2/3 . (169)
As Eq. (168) shows, even universe models with k£ = 41 initially expand like the Einstein-de Sitter
universe when R is relatively small, especially when p is very close to pcrit-

For the Einstein-de Sitter model, the universe’s age may be determined from the Hubble constant:

2R 21
= - — = 9.2 billion years (170)

th = -2 =
0 3R 3 H

From Egs. (169) and (170), a matter-dominated universe expands as:

. t " 171
Ry ~ (9.2 billion years> (171)

It was long believed that the Einstein-de Sitter model best described our universe, but more precise
measurements of Hy revealed that the age given by Eq. (170) is too short and the age of the oldest
stars in the universe is too long (~ 13 billion years). Thus our universe has not been matter-
dominated for at least part of its history to date.

Radiation dominance

The very early universe was radiation-dominated; this caused a different time dependence of R,
which will now be calculated. First note that a photon’s wavelength gets stretched as R increases,
so the photon’s energy E or frequency f is E o f o 1/R. The number of photons per volume
also decreases like ~ 1/R3 as the volume of the universe increases. Therefore the radiation energy
density is praq < E/R3 o< 1/R*, or in terms of the current radiation density pyaq o in the universe:

Ro\*
N = pr — . 172
Prad padO<R> ( )

For radiation, the relationship between pressure and density is 3p = pc?. By using this information
in Eq. (160) and setting A = 0, one finds
R

R (30)4 (173)
R rad 0 £1Q R .
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Integrating Eq. (173) reveals that R(t) « v/ for a radiation-dominated universe:

0 1/4
R(t) = (2‘10) Rov/Hot . (174)
Radiation was much more important in the early universe because pyq o 1/ R*, whereas pmatter X
1/R3, so the ratio at any time ¢ is:

Prad (t) _ Ql"aLd 0 RO (175)

pmatter(t) Qmatter 0 R(t)

The universe transitioned from an era of radiation dominance to an era of matter dominance,
Prad (ttransition) = pmatter(ttransition)7 when the size of the universe was Rtransition:

Riransition o Qrad 0 ~ 2% 10*4 . (176)

RO Qrna‘cter 0

Using Eq. (176) with Q040 ~ 6 x 107° and Quatter 0 ~ 0.28 and solving Eq. (174) for the time of
transition between the radiation-dominated and matter-dominated eras of the universe, one finds

2 ( Rtransition ) 2 1 2 ( Qrad 0 ) 2 1
t iti = — = — 100,000 years (177
fransition Qmd 0 RO HO Qrad 0 Qmatter 0 HO Y ( )

Q

The universe is filled with thermal radiation (the cosmic microwave background radiation) with
a current temperature of 2.725°K, or 2.35 x 10~* electron-Volts (eV). Since the temperature of
thermal radiation varies as T" o< 1/R just as the photons’ energy does, the temperature of the
radiation at other times in the history of the universe (not just the radiation dominated era) was

Traa(t) ~ 2.725 15;2) K ~ 2.35 x 107% RR;‘;) eV (178)
Combining Egs. (174) and (178) and using Hy ~ 2.3 x 10718 sec ™!, the temperature of the universe
at any time ¢ (in seconds) during the radiation-dominated era was
6
T(t) ~ 2.09 x 10° eV (179)
t (sec)
Big Bang nucleosynthesis fused some hydrogen into helium-4 and trace amounts of other ele-
ments during the first few minutes of the universe. Weak nuclear force interactions freely converted
protons into neutrons and vice versa until the universe cooled below 7' = 0.8 MeV [t ~ 7 sec from
Eq. (179)], and neutrons fused with protons to become deuterium and ultimately helium-4 once
the universe cooled to T' = 0.1 MeV [t = 437 sec from Eq. (179)]. Free neutrons decay exponen-
tially with a mean lifetime of ~886 sec and had to survive ~430 sec before they were stabilized by
becoming part of nuclei, so ~ exp(-430 sec/886 sec) of the initial neutrons survived. Protons have a
rest energy of 938.3 MeV and neutrons have a rest energy of 939.6 MeV, so in thermal equilibrium
at 0.8 MeV when they were last created, the number of neutrons n,, was much smaller than the
number of protons n, due to the 1.3 MeV of extra energy required by the neutrons and the Boltz-
mann exponential factor (Statistical Physics 7.7), n,/n, ~ exp(-1.3 MeV /0.8 MeV). Combining
these factors, the relative amount of neutrons that were created and survived to form nuclei is

o ( 1.3 MeV) . ( 430 sec) 1 (150)
y PAT08Mev ) P\ 8865ec) ~ 8
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This is very close to the answer n,/n, ~ 1/7 from more detailed calculations-the universe has
about one neutron for every seven protons. With that ratio, two neutrons and 14 protons can form
one helium-4 and 12 hydrogen atoms, which agrees well with the observed amount. Not counting
subsequent nucleosynthesis in stars, the universe has ~ 12/13 hydrogen and ~ 1/13 helium atoms
by number, or ~75% hydrogen and ~25% helium-4 by mass. There is also ~0.01% deuterium and
much smaller amounts of helium-3, lithium-6, lithium-7, and beryllium-7, as predicted by detailed
calculations and confirmed by spectroscopic observations of the universe [14]-[17].

Decoupling of radiation from matter occurred when the universe cooled to ~ 3000°K ~ 0.3 eV.
Prior to this time, all or much of the matter in the universe was ionized (with some electrons
not bound by nuclei) and thus strongly interactive with electromagnetic radiation and in thermal
equilibrium with it. After this time, almost all of the electrons were bound in atoms and the matter
became transparent to photons and no longer interacted with them. The present cosmic microwave
background radiation dates to this time, when the size of the universe was R/Ry ~ 9 X 10~ using
Eq. (178). Equations (176) and (177) found that the radiation-dominated era lasted ~ 100,000
years until R/Rg ~ 2 x 10™*. Assuming subsequent complete matter dominance for simplicity, Eq.
(171) shows that the time required for the universe to grow from R/Rg ~ 2 x 107% to 9 x 10~*
was ~ 200,000 years. Thus the cosmic microwave background attained its final form as ~3000
°K blackbody radiation ~ 300,000 years after the Big Bang and has been redshifted to 2.725 °K
blackbody radiation as the universe has expanded in the ~13.7 billion years since that time.
Vacuum energy dominance

The expansion of the universe proceeds very differently if the universe is dominated by vacuum
energy A instead of matter or radiation. In this case, Eq. (160) becomes
R A

(181)

R 3
The solution of Eq. (181) is exponential inflation of the size of the universe on a timescale 7:

3
t/T h = —_ 182
R(t) x e where T ”cQA (182)

Section 6.3 provided the physical basis for understanding this exponential inflation. From KEgs.
(130) and (131), vacuum energy fills all of space with a constant energy density (which is determined
by fundamental quantum physics considerations and cannot change if the vacuum energy’s volume
is changed) but a negative pressure. The negative pressure ensures that if the volume occupied
by the vacuum energy increases by an amount dV, the associated work dW = —p dV will be
sufficient to provide the energy needed to create more vacuum energy to fill the new volume. Thus
the universe gains energy by expanding, just as the mythical substance flubber gained energy by
bouncing in the movies. The universe expands a bit, which gives it some energy and make it want
to expand more, which gives it more energy and makes it want to expand even more, and thus
the size of the universe grows exponentially. An alternate but equivalent view is that the vacuum
energy exerts an antigravitational force, pushing the universe apart instead of trying to pull it
together like the gravitational attraction of normal energy and matter.

Current astronomical observations indicate that there is a small but nonzero A, called dark energy,
which may have always been present but is only now becoming dominant as the expansion of the
universe causes normal energy and matter to become more dilute and thus to exert less influence. If
this is correct, the coming billions of years will see our universe begin to expand exponentially and
completely isolate each galaxy from the other galaxies. Using the measured dark energy density
Q) = ?A/(3HE) =~ 0.72, the time constant for this exponential fate of the universe is:
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! 16.3 billi (183)
T = ——— = 16.3 billion years
Ho/Qp
Of course, we currently have no idea what exactly dark energy is, so it is possible that it could
dissipate, increase, or do something else in the far future of the universe. The recent history of the

universe, in which there has been a mixture of dark energy and matter, will be discussed shortly.

Cosmologists believe that a different form of vacuum energy A existed for a brief time after the
Big Bang. The universe may have come into existence with empty space itself in a metastable
excited quantum energy state (called a false vacuum) instead of an actual ground energy state (the
true vacuum). The universe would then have significant vacuum energy and its size would grow
exponentially, until space decayed to the true vacuum, at which point that initial vacuum energy
would be converted into radiation and matter . There are at least three reasons to believe that the
universe went through a brief initial period of exponential growth, known as inflation [14]-[17]:

e Flatness (2 = 1) of the universe. The flatness of the universe (how close the total density
of radiation, matter, and vacuum energy is to the critical density) evolves differently over
the history of the universe, depending on whether the universe is truly flat (k¥ = 0), open
(k = —1), or closed (k = 1) and dominated by matter, radiation, or vacuum energy. Using
Eq. (164) with Eqgs. (169), (174), and (182), one finds:

=0 for k=0
10(t) — 1 k[ ) o 23 for k = +1 and matter-dominance (184
(dR/dt)? x t for k = +1 and radiation-dominance
x exp(—2t/7) for k = +1 and vacuum-energy-dominance

Thus if the universe begins perfectly flat with £ = 0 and Q = 1, it will remain that way for
all time. However, if the universe is radiation dominated (as it was in its early history) or
matter dominated (as it has been for most of its history) and begins with even a little curvature
(k = £1 and |Q — 1| small but nonzero), that curvature will grow rapidly as time passes, as
shown in Eq. (184). [These results are based on Egs. (169) and (174), whose assumption
of negligible curvature will break down once the curvature becomes too large, so |Q(t) — 1|
will eventually level off.] For our universe to be as flat as it is now (|Q(tg) — 1| < 1072 for
to ~ 4 x 107 sec), it would have had to be incredibly, utterly close to flat (|Q(t) — 1| < 10714
for t ~ 1 sec) in the earliest stages of the universe, which is an exceedingly tight constraint. On
the other hand, if inflation occurred during the early universe, |2 — 1| would have approached
0 exponentially, as shown by Eq. (184). Physically, this just means that even if the universe
has a spherical or saddle shape as in Fig. 31, if inflation blew that shape up to a very large
size and we could only see a very small amount of it (only those regions whose light was able
to reach earth within 13.7 billion years), that very small piece of a homongous spherical or
saddle-shaped universe would look essentially flat.

e Dilution of strange relic particles from the Big Bang. Most grand unified theory
models of how forces and particles were unified at the time of the Big Bang predict the
creation of magnetic monopoles and other weird particles during or immediately after the Big
Bang. Rapid inflation of the size of the universe would greatly dilute the concentration of
these particles and explain why we don’t see any signs of them now.
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e Identical conditions between causally disconnected regions of the universe (hori-
zon problem). The cosmic microwave background radiation temperature, the density of
matter, physical laws, and other properties appear to be the same as far as we can see in one
direction in the universe (> 13 billion light-years away) and also as far as we can see in the
opposite direction, even though those regions are too far apart (> 26 billion light-years) to
have had any influence on each other during the ~ 13.7-billion-year history of the universe.
However, if inflation made the early universe expand much faster than light (that’s legal-it’s
just empty space between things expanding faster than light, not objects themselves moving
through surrounding space faster than light), all the regions we can see could have originally
been part of the same causally connected region before inflation. In fact, the early universe
may have had different regions with different densities, temperatures, and even fundamental
physical constants and laws, and all the universe we can currently see expanded from one of
those small homogeneous regions. Far beyond the visible universe, far beyond where we could
travel without exceeding the speed of light, may lie other regions of the universe with very
different properties.

Current measurements suggest that exponential inflation may have proceeded for at least ~ 60
time constants all within the first ~ 10732 seconds after the Big Bang [14]-[17].

Dominance by both vacuum energy and matter

Our universe appears to be flat (k = 0 and © = 1) with significant amounts of matter and vacuum
energy but negligible radiation density for most of its history (Qmatter + €2, = 1). Using these
conditions, Eq. (168) may be rewritten as:

R R 1/2
R = HoRy [(1— Q)= +Qp— 185
oRo [( A) 7t AR%] (185)
Using Eq. (185), one can calculate the age of our universe:
RodR 1 [RodR Ry . R2V?
t:/f=7/71—9—+9f 186
0 o R Holo Ry [( N TR (186)

211 <1+\/@> (187)

3H, Vo, \J/I-9,
in which the integral is done by cheating and looking it up in a book of scary integrals.

The age of a matter- and vacuum-energy-filled universe comes out to be about the same as the age
of an empty universe, to ~ H, 1, when Q, ~ 0.74 and Qmatter ~ 0.26, which is almost exactly what
we have measured for the actual universe. The physical explanation for this result is that for most
of the history of our universe to this point, the “antigravity” repulsion of the vacuum energy has
nearly balanced the gravitational attraction of the ordinary and dark matter, so our universe has
been expanding at a nearly constant rate.

In the future, the influence of vacuum energy’s antigravity will increase and matter’s gravity will
decrease, and the universe will expand more and more rapidly, ultimately returning to the expo-
nential inflation of a vacuum-energy-dominated universe as calculated previously. (The vacuum
energy that produced inflation in the very early universe probably had a different origin than the
vacuum energy that is mildly accelerating the universe’s expansion now and that will ultimately
drive future inflation.)
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