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Resembling fire or the sun, made of costly materials... it measured three cubits
and six feet. Endued with the force of the thousand-eyed Indra’s thunder... it was
exceedingly terrible and destructive of all living creatures. Partha cheerfully took up
that great weapon, in the shape of an arrow, which could not be resisted by the very
gods... Thus sped by that mighty warrior, that shaft endued with the energy of the sun
caused all the points of the compass to blaze up with light.

–Karna Parva, Chapter 91

Then Drona’s son, aiming at the host of the Pandavas and the Panchalas, invoked
the weapon called Narayana... Shafts, O king, like the very rays of the sun in a mo-
ment shrouded all the points of the compass, the sky, and the troops... That weapon
became exceedingly powerful. Slaughtered by the Narayana weapon, as if consumed
by a conflagration, the Pandava troops were exceedingly afflicted all over the field in
that battle. Indeed, O lord, as fire consumes a heap of dry grass in summer, even so
did that weapon consume the army of the Pandus. Beholding that weapon filling every
side, seeing his own troops destroyed in large numbers, king Yudhishthira the just, O
lord, became inspired with great fright.

–Drona Parva, Chapter 200
Mahabharata (ca. 400 B.C. - 400 A.D.)

Overview

When a gas is heated enough, its atoms acquire sufficient energy that they separate into their com-
ponent nuclei (or ions) and electrons, forming a plasma. The electrically charged ions and electrons
interact with each other and with external electromagnetic fields, exhibiting several categories of
phenomena: individual-particle effects, diffusion or transport of a population of particles, magne-
tohydrodynamics, and waves. The main application of plasma physics is nuclear fusion. Small
nuclei can release large amounts of energy when they fuse to form larger nuclei, but in order to
overcome the Coulomb repulsion between them, they must have very high kinetic energies, or in
other words form a high-temperature plasma. Fusion reactions occur naturally in stars and can also
be triggered in thermonuclear explosive devices. Long-term research has striven to develop electric
power plants using inertial confinement fusion (miniature thermonuclear explosions) or magnetic
confinement fusion. A different application of plasma physics is designing particle accelerators.
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1 Some General Properties of Plasmas
This section will introduce some key equations used to model plasmas [1]-[4], then cover basic plasma
phenomena such as Debye shielding, the plasma frequency, bremsstrahlung, cyclotron motion, and
fusion reactions. This summary uses mks units unless otherwise noted; where equations are reduced
to practical numerical values, the units of the input variables are given as subscripts.

1.1 Basic Equations for Modeling Plasmas
The simplest approach to plasma physics is to consider a typical particle with mass m, charge q,
and velocity v in the plasma. From electromagnetism, an electric field E and magnetic field B will
exert a Lorentz force F = q(E + v ×B) on the particle, so the particle’s equation of motion is

m
dv

dt
= F = q(E + v ×B) . (1)

This single-particle approach will prove useful for calculating effects such as cyclotron motion.

A more general approach is to consider the plasma as a collection of particles with a distribution
of positions x and velocities v given by some function fj(x,v, t), where j denotes the particle
species. Usually only two particle species are considered–ions i and electrons e. In some cases, it is
necessary to be more accurate by treating two fusion fuel ion species (e.g., deuterium and helium-3)
separately or by explicitly including fusion products as additional particle species.

The total time derivative of fj may be expressed as the sum of partial derivatives with respect to
the variables t, x, and v on which fj depends:[

∂

∂t
+
dx

dt
· ∂
∂x

+
dv

dt
· ∂
∂v

]
fj =

dfj
dt

, or[
∂

∂t
+ v· ∂

∂x
+ a· ∂

∂v

]
fj =

(
∂fj
∂t

)
col

Fokker-Planck equation, (2)

where a ≡ q

m
(E + v ×B) from Eq. (1).

Equation (2) is called the Boltzmann equation by everyone except plasma physicists, who call
it the Fokker-Planck equation just be different. The left side of Eq. (2) accounts for all effects
except collisions between the particles, so collisions are the only thing that can affect the total time
derivative on the right side. The collision operator (∂fj/∂t)col accounts for both collisions among
the same particle species j and collisions with the other species. It may be explicitly written as
a complicated integral involving the particle distributions, but calculations with it are very nasty
[5, 6, 7]. If collisions may be neglected, (∂fj/∂t)col = 0, Eq. (2) is called the Vlasov equation.

As will be shown in Section 2, collisions within a particle species have a much stronger effect on
the particle distributions than collisions between different particle species. Like-particle collisions
create a velocity distribution that is in thermal equilibrium, so from statistical physics:

fj ∝ exp

(
− Ej
kBTj

)
∝ exp

(
−
mjv

2
j

2kBTj

)
, or

fj(v) =
n

(
√

2πvtj)3
exp

[
− (v − voj)

2

2v2
tj

]
Maxwellian velocity

distribution (see Fig. 1)
(3)

Ej is the average particle energy, kB = 1.3807 × 10−23 J/oK is the Boltzmann constant, Tj is

the temperature, and vtj ≡
√
kBTj/mj is the thermal velocity. (Note that some other authors

include a
√

2 in the definition of vt.) In Eq. (3), the distribution has been generalized in case the
particle velocities are centered about a nonzero average velocity voj. The distribution has also been
normalized so that integration over all velocities yields the particle density n.
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Figure 1. Maxwellian velocity distribution. In a Maxwellian plasma, the velocities of the
particles in the plasma fit a Gaussian (bell curve) distribution centered around v0, which is taken
here to be zero. The thermal velocity vt ≡

√
kBT/m corresponds to the standard deviation of the

Gaussian, or the point where the distribution f has fallen to e−1/2 ≈ 0.607 of its peak central value
f(0).

The thermal velocities of electrons and ions are

vte ≡
√
kBTe
me

= 1.32× 107
√
Te, keV

m

sec
Electron thermal velocity (4)

vti ≡
√
kBTi
mi

= 3.09× 105
√
mp

mi

√
Ti, keV

m

sec
Ion thermal velocity (5)

The ion mass has been expressed relative to the proton mass mp. As is common in plasma physics,
Eqs. (4) and (5) have converted the temperature T to its equivalent thermal energy kBT in kilo-
electron volts (keV). The typical temperatures of plasmas are so high that it is more manageable
to express the numbers in keV than in degrees Kelvin. The equivalency is

1 keV = 1.16× 107 oK (6)

Because collisions very quickly create Maxwellian velocity distributions (see Section 2.1), the elec-
trons and ions are generally assumed to be Maxwellian unless there is a reason to believe otherwise.
The details of the velocity distribution can then be ignored, and one can treat the ions and electrons
as two interpenetrating fluids, each with some spatial distribution nj(x) and net velocity voj or
simply vj. The thermal velocity vtj can also be invoked whenever necessary for certain calculations.

Neglecting particles lost to nuclear reactions, conservation of species j particles may be expressed
as the usual continuity equation (see the mathematics summary for more details):

∂nj
∂t

+∇·(njvj) = 0 Conservation of particles (7)

Treating species j (electrons or ions) as a fluid, Newton’s second law for conservation of momentum
may be written as

Mass × acceleration︷ ︸︸ ︷
njmj

(
∂

∂t
+ vj · ∇

)
vj =

Lorentz
force︷ ︸︸ ︷

njqj(E + vj ×B)

Pressure
force︷ ︸︸ ︷
−∇p +

Force from collisions
with other species︷︸︸︷
Pjl Momentum equation (8)



Plasma Physics and Fusion 5

Because they are written in terms of the density nj , the quantities on the left and right sides of Eq.
(8) are per volume. Equation (8) is really just the Navier-Stokes equation from fluid mechanics.
The collision term Pjl is scary to actually calculate and can usually be ignored anyway.

As explained in the fluid mechanics summary, the term (∂/∂t + v · ∇) ≡ d/dt is called the con-
vective derivative. The ∂/∂t represents actual variation with time, and the v · ∇ accounts for
apparent time variation of a quantity due to moving along a spatial gradient ∇ of the quantity at
velocity v. Often the v · ∇ term can be neglected in actual calculations.

The total pressure p is the sum of the partial pressures pj of each particle species j, which are
usually found from the ideal gas law:

pj = njkBTj Ideal gas law (9)

When ions or electrons are compressed, the compression is usually assumed to be adiabatic:

pj
nγj

= constant =⇒ dpj = γ
pj
nj

dnj Adiabatic relation (10)

From Statistical Physics ?.?, for adiabatic compression in D dimensions γ = (D + 2)/D. Thus
γ = 3 for 1D compression, 2 for 2D, and 5/3 for 3D. For isothermal compression, Eq. (10) may
still be used but with γ = 1, as may be seen from Eq. (9) with Tj held constant.

Instead of treating electrons and ions as separate interpenetrating fluids, under certain circum-
stances they can be lumped together and treated as a single fluid. This approach is called mag-
netohydrodynamics and is discussed in Section 3.

1.2 Debye Length and Plasma Frequency

An important property of plasmas is their ability to screen out electric or electromagnetic fields.
The Debye length and the plasma frequency are two different measures of this screening ability.

Debye Length

Consider a positive test charge Q at position r = 0 in a plasma, as shown in Fig. 2(a). It will repel
ions and attract electrons from the plasma, thereby surrounding itself with a cloud of negative
charge. This negative charge screens out the positive charge Q beyond a certain distance, the
Debye length λD, which can be calculated.

Using Poisson’s equation from electromagnetism, the electric potential surrounding Q depends on
the electron and ion densities (Z = 1 is assumed here for simplicity):

∇2φ =
e

εo
(ne − ni)−

Q

εo
δ(r) . (11)

Yet from statistical physics, the electron and ion densities also depend on the potential:

ne = no exp

(
eφ

kBTe

)
≈ no

(
1 +

eφ

kBTe

)
(12)

ni = no exp

(
− eφ

kBTi

)
≈ no

(
1− eφ

kBTi

)
, (13)

in which no is the equilibrium density required for strict electrical neutrality, ne = ni = no, and
Taylor expansions have been made assuming the electric potential is relatively weak (eφ� kBT ).



6 Plasma Physics and Fusion

(a) (b) 

+Q 

E 
x x 

+ 
+   + 

+ 
+   + 

+ 
+   + 

+ 
+   + 

- 
-    - 

- 
-    - 

- 
-    - 

- 
-    - 

+    -    +    -    +    - 
-    +    -    +    -    + 
+    -    +    -    +    - 
-    +    -    +    -    + 
+    -    +    -    +    - 
-    +    -    +    -    + 
+    -    +    -    +    - 
-    +    -    +    -    + 

- 
- - - - - - - - - - - 

- 
- 

- - 
- 

- 
- - - 

- 
- 

- 

- 

- 
- - 

- 

- 

- 
- 

Figure 2. Debye length and plasma frequency. (a) If a positive test charge Q is placed within
a plasma, it will attract electrons and repel ions from its vicinity, thereby surrounding itself with a
cloud of negative charge. This cloud effectively screens out electric charges (or electric potentials)
at distances greater than the Debye length λD. (b) Charges (especially electrons) within a plasma
can slosh back and forth, leaving regions of excess negative charge and unneutralized positive
charge. The charged regions produce electric fields that drag the charges back the other way, but
the charges overshoot and keep oscillating back and forth. The natural frequency of this sloshing is
called the plasma frequency ωp. Applied electromagnetic fields with frequencies less than ωp cannot
propagate into a plasma, because the plasma’s charges can oscillate quickly enough to cancel out
the applied field.

Inserting Eqs. (12) and (13) into Eq. (11) produces

∇2φ =
1

λ2
D

φ− Q

εo
δ(r) , (14)

in which the Debye length λD has been defined as

1

λ2
D

≡ 1

λ2
De

+
1

λ2
Di

Total Debye length λD (15)

λDe ≡
√
εokBTe
nee2

= 235

√
Te, keV
ne, cm−3

m Electron Debye length (16)

λDi ≡
√
εokBTi
niZ2e2

=
235

Z

√
Ti, keV
ni, cm−3

m Ion Debye length (17)

The ion charge Z has been restored in Eq. (17) for generality.

The solution of Eq. (14) is

φ =
Q

4πεor
exp

(
− r

λD

)
. (18)

This result is the usual Coulomb potential around a point charge, except for the exponential factor.
As predicted, the plasma screens out the test charge beyond a distance ∼ λD. More generally, a
plasma efficiently screens out almost any applied electric potential. Incidentally, Eq. (18) has the
same form as the Yukawa potential that describes strong force interactions mediated by pions.
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Plasma Frequency

Plasmas can respond to oscillating as well as static electric fields. Figure 2(b) shows a slab of
plasma, which can be treated as a simple one-dimensional problem. In an oscillating electric field,
the electrons slosh back and forth but the ions remain relatively motionless due to their much
larger mass. As the electrons move back and forth, they create a negative surface charge Σ of
excess electrons on one side of the slab and a positive surface charge of the same magnitude of
unneutralized ions on the other side. That produces an electric field that drags the electrons back
the other way, but they overshoot in the other direction and thus oscillate. This closes the cycle–the
oscillating electrons create the time-varying electric field, and the electric field causes the electrons
to oscillate. The resonant frequency of these natural oscillations is called the plasma frequency.

Applying Poisson’s equation ∇ ·E = ρcharge/εo to the slab (defining ρcharge as the charge density
and x as the thickness of the unneutralized charge layers) yields the electric field E in the slab:

E =
Σ

εo
=

enex

εo
. (19)

The electric field creates a restoring force F on the electrons,

F = −eE = − e2ne
εo

x (20)

Using this restoring force, Newton’s second law F = me d
2x/dt2 for the electrons becomes

0 =
d2x

dt2
+

e2ne
εome

x =
d2x

dt2
+ ω2

pex (21)

According to Eq. (21), the electrons thus behave like a simple harmonic oscillator with frequency

ωpe ≡

√
e2ne
εome

Angular electron plasma frequency (22)

Although the more massive ions do not slosh as well, it is convenient to define an analogous ion
plasma frequency to be used in calculations of ion waves in Section 4:

ωpi ≡

√
Z2e2ni
εomi

Angular ion plasma frequency (23)

The corresponding frequencies fp = ωp/2π for electrons and ions are

fpe =
1

2π

√
e2ne
εome

= 8980
√
ne, cm−3 Hz Electron plasma frequency (24)

fpi =
1

2π

√
Z2e2ni
εomi

= 210 Z

√
mp

mi

√
ni, cm−3 Hz Ion plasma frequency (25)

It is worth noting the relations

ωpe =
vte
λDe

ωpi =
vti
λDi

(26)

These relations may be interpreted as meaning that the electrons or ions, moving at their thermal
velocity, can travel approximately one Debye shielding length during one plasma oscillation. In other
words, the plasma particles can move quickly enough to provide full (at least one Debye length)
screening of an applied electric or electromagnetic field if the field is oscillating at a frequency no
greater than the plasma frequency. Section 4 will analyze in more detail the ability of plasmas to
screen out electromagnetic waves with frequencies below the plasma frequency.
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1.3 Bremsstrahlung
When electrons collide with ions, they convert some of their kinetic energy into electromagnetic
radiation, termed bremsstrahlung (German for “braking radiation”). This radiation is one of
the most important power loss mechanisms in fusion plasmas, and it is also useful as a diagnostic
to measure the electron temperature. A rigorous derivation of bremsstrahlung requires quantum
electrodynamics (QED) and is very nasty, even by the standards of QED. The derivation that
follows is a crude physical argument that arrives at the correct answer.

When an electron encounters an ion with impact parameter b [Fig. 3(a)], the electron’s maximum
acceleration a may be estimated by applying Newton’s second law to the Coulomb force F :

mea = F ≈ Zie
2

4πεob2
. (27)

(a) (b) 
Ion 

Original trajectory of electron 

New 
trajectory 

Electron 
trajectory 

b 
~b ~b 

~b 

b 

Population of ions 

Figure 3. Bremsstrahlung radiation. (a) Due to attraction by an ion, an electron is deflected
from its original trajectory to a new trajectory. If the impact parameter of the original trajectory
is b, the distance of closest approach may be approximated as ∼ b, and the path length over which
the acceleration (trajectory deflection) occurs may be taken as ∼ 2b. The acceleration causes the
electron to emit bremsstrahlung radiation. (b) Acceleration of an electron by all ions may be taken
into account by considering the ion density and integrating over all impact parameters.

From electromagnetism, the electromagnetic power radiated by the accelerated electron is

Pe =
e2a2

6πεoc3
Power radiated by accelerated electron (28)

=
Z2
i e

6

96π3ε3oc
3m2

eb
4

using Eq. (27) . (29)

The acceleration and hence bremsstrahlung emission lasts for a time ∼ 2b/vte, so the total energy
emitted during the encounter is

Ee =
2b

vte
Pe =

Z2
i e

6

48π3ε3oc
3b3m2

evte
. (30)

The average power emitted by one electron encountering multiple ions [Fig. 2(b)] is

Pmult =

Rate of encounters with ions︷ ︸︸ ︷∫ ∞
bmin

(2πb db) (nivte)

Energy emitted per encounter︷︸︸︷
Ee

=
e6∑

i(Z
2
i ni)

24π2ε3oc
3m2

e

∫ ∞
bmin

db

b2
=

e6∑
i(Z

2
i ni)

24π2ε3oc
3m2

ebmin
(31)
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If the minimum possible impact parameter were bmin = 0, the bremsstrahlung power would be
infinite. Quantum physics spares us from that nonsensical result by supplying a nonzero minimum
impact parameter. At such small distances, the electron behaves quantum mechanically and obeys
the Heisenberg uncertainty principle, (∆x)(∆p) ≈ h/2π, where h is Planck’s constant. Assuming
∆p ≈ mevte, the minimum impact parameter is simply the DeBroglie wavelength of the electron:

bmin ≈ ∆x ≈ λDeBroglie ≡
h

2πmevte
=

h

2π
√
mekBTe

. (32)

Using Eqs. (31) and (32), the bremsstrahlung power from all the electrons within a volume is

Pbrem

vol.
= nePmult =

∑
i(Z

2
i ni)e

6ne
√
kBTe

12πε3oc
3m

3/2
e h

≈ 5.34× 10−31
∑
i

(Z2
i ni, cm−3)ne, cm−3

√
Te, keV

Watts

cm3
(33)

It is important to minimize the Z of the ion species in the plasma. Thus fuel ions should have very
low Z, and fusion products like 4He should be quickly removed. Likewise, the first wall surrounding
the plasma should be made of very low-Z material that ablates very little into the plasma.

To lowest order, collisions between electrons do not produce radiation, because the acceleration of
one electron is equal but opposite that of the other, or in other words, the electromagnetic waves
from each electron cancel out. At high electron energies, relativistic effects can produce unequal
accelerations and thus some electron-electron bremsstrahlung. Relativistic corrections are of the
order Te/mec

2 and therefore are generally only important for Te > 100 keV. For more information,
see [5]. Bremsstrahlung from ions is negligible due to their large masses and small accelerations.

1.4 Cyclotron Motion and Related Effects

A magnetic field causes charged particles to move in circles perpendicular to the field. Because this
principle is used to make circular particle accelerators (see Section 8.1), it is termed cyclotron or
synchrotron (or sometimes Larmor) motion. The centripetal acceleration of the charged particles
makes them emit electromagnetic cyclotron radiation. As will be shown, variations in the magnetic
field or the presence of additional fields can cause a net drift velocity for the spiraling particles.
Cyclotron motion can also be used to trap particles in a magnetic mirror field.

Cyclotron Motion

For a charged particle moving in the presence of a static magnetic field B, Eq. (1) becomes

m
dv

dt
= qv ×B =⇒ dv

dt
= ωc(v × b̂) , (34)

where b̂ is a unit vector along the magnetic field’s direction and the angular cyclotron frequency is

ωc ≡
qB

m
Angular cyclotron frequency (35)

Equation (34) shows that the charged particle moves in a circle perpendicular to the magnetic
field with angular frequency ωc [Fig. 4(a)]. The direction of rotation depends on the sign of the
particle’s charge. For electrons or ions, the corresponding frequency fc = ωc/2π is

fce ≡
eB

2πme
= 28.0BT GHz Electron cyclotron frequency (36)

fci ≡
ZeB

2πmi
= 15.2 Z

(
mp

mi

)
BT MHz Ion cyclotron frequency (37)
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Figure 4. Cyclotron motion and E×B drift. (a) The v×B force due to a magnetic field
pointing out of the page creates a centripetal acceleration a that bends a positively charged particle’s
trajectory into a circular cyclotron orbit with radius rc as shown. A negative particle would orbit
in the other direction. (b) If an upward electric field is added, it will accelerate a positive particle
when it is going upward on the left side of the orbit and decelerate the particle when it is moving
downward on the right. The particle goes faster when moving to the right than when moving to the
left, displacing the particle orbit to the right. A negative particle orbits in the opposite direction
and is accelerated downward by the electric field, so its orbit is also displaced to the right. (c)
Therefore, the cyclotron orbits of both positive and negative particles experience a steady net drift
in the E×B direction.

If a particle has an average thermal energy 1
2kBT per degree of freedom, its kinetic energy and

hence velocity in the plane perpendicular to the magnetic field are

1

2
mv2
⊥ = kBT =⇒ v⊥ =

√
2kBT

m
=
√

2vt (38)

The cyclotron radius of the particle’s orbit is simply rc = v⊥/ωc, or

rce ≡
√

2kBTeme

eB
= 0.106

√
Te, keV
BT

mm Electron cyclotron radius (39)

rci ≡
√

2kBTimi

ZeB
= 4.56

√
Ti, keV
ZBT

√
mi

mp
mm Ion cyclotron radius (40)

Some authors define the cyclotron radius without the above factor of
√

2. For a typical fusion plasma
with T ∼ 10 − 20 keV and B ∼ 1 − 10 T, rce and rci are much smaller than the dimensions of
most plasma containment vessels, so particles spiral tightly about the magnetic field lines. Particle
motion along the field lines is not affected by any v ×B magnetic forces. To a first approximation,
particles may thus be regarded as closely following the magnetic field lines.

Cyclotron Radiation

From Eq. (34), electrons undergoing cyclotron motion experience a centripetal acceleration a =
eBv⊥/me. Using this acceleration in Eq. (28) yields the electromagnetic power radiated by each
gyrating electron:

Pe =
e4

6πεoc3m2
e

B2v2
⊥ =

e4

3πεoc3m3
e

B2kBTe . (41)

The cyclotron power radiated by all electrons within a given volume is just nePe, or

Pcycl

volume
=

e4

3πεoc3m3
e

B2nekBTe = 6.21× 10−17B2
T ne, cm−3 Te, keV

Watts

cm3
(42)
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This power is radiated at the electron cyclotron frequency fce and higher harmonics. To minimize
power losses due to cyclotron radiation, the magnetic field inside a fusion plasma can be kept as
small as possible. Fortunately, cyclotron radiation is also in a frequency range that can be reflected
back into the plasma and reabsorbed with a relatively good efficiency. The cyclotron radiation from
ions is smaller than that from electrons by a factor of (me/mi)

3 and thus may be neglected.

Drift of Cyclotron Orbit Due to Electric Field or Other Force

As shown in Fig. 4(b), an upward electric field (or other force) causes a particle orbiting in
a perpendicular magnetic field to accelerate while moving upward and decelerate while moving
downward. The particle’s motion to the right during the upper part of the orbit then exceeds its
motion to the left during the lower part, inducing a net drift of the orbit [Fig. 4(c)]. The particle
velocity is a purely circular cyclotron motion vcycl plus a constant linear drift velocity vdrift induced
by the electric field:

v = vcycl + vdrift , where
dvdrift

dt
= 0 (43)

Equation (43) may be substituted into Eq. (1). Removing the terms that involve vcycl and corre-
spond to Eq. (34) leaves only the drift terms

0 = E + vdrift×B (44)

The drift velocity is perpendicular to both E and B, so it must take the form

vdrift = αE×B , (45)

where α is some function of the fields. Substituting Eq. (45) into Eq. (44) shows what α must be:

0 = E + α(E×B)×B = E− αB2E =⇒ α =
1

B2
. (46)

Thus the drift due to the electric field is

(vdrift)electric =
E×B

B2
(47)

The drift due to a more general force F may be found by substituting qE→ F in Eq. (47)

(vdrift)F =
F×B

qB2
(48)

The drift direction due to F depends on the sign of q, since charges of opposite sign orbit in opposite
directions. However, the electric-field-induced drift does not depend on q; reversing the charge’s
sign reverses both the orbital direction and the force qE, leaving the drift direction unchanged.

Drift Due to Curved Magnetic Field Lines

If magnetic field lines bend with a radius of curvature R as in Fig. 5(a), particles moving along
those lines will experience a centrifugal force mv2

‖R/R
2. From Eq. (48), this causes a drift velocity

(vdrift)curvature =
mv2
‖

q

R×B

R2B2
(49)

Drift Due to Gradient in Magnetic Field Strength

If B differs at different points in a particle’s orbit, the particle will experience a net drift. As a
simple yet illustrative example, Fig. 5(b) shows that if the magnetic field in the left half of a particle
orbit is stronger than that in the right half, the cyclotron radius will change during the orbit and
the particle will drift downward. Another way to view this phenomenon is that the Lorentz force
qv ×B averaged over a complete orbit is zero for a uniform magnetic field but nonzero if the field
varies with position. A spatially varying magnetic field exerts a net sideways force:

Fnet = q 〈v ×B〉cycle = −q 〈(v⊥ cosωct)(∇Brc cosωct)〉cycle

= −qv⊥rc∇B
〈

cos2 ωct
〉

cycle
= − 1

2
qv⊥rc∇B (50)
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(a) (b) B 

Strong B 
(out of 
page) 

Weak B 
(out of 
page) 

R 
Particle 

trajectory FcxB drift is 
perpendicular to page 

∇B  

(∇B)xB drift  

Figure 5. Curvature and ∇B drifts. (a) Magnetic field lines with a radius of curvature R
cause particles spiraling along them to feel an outward centrifugal force Fc ‖ R. This creates an
Fc ×B drift, with positive particles moving into the page and negative particles moving out of the
page. (b) If a magnetic field coming out of the page is stronger on the left side and weaker on the
right, a particle will have a smaller cyclotron orbital radius on the left side than the right. This
difference causes a drift downward [in the (∇B) × B direction] for positive particles and upward
for negative ones.

Using this force in Eq. (48) gives the drift velocity

(vdrift)∇B =
1

2
v⊥rc

B×(∇B)

B2
(51)

Magnetic Mirror Effect

If plasma particles are spiralling along magnetic field lines and the field lines become stronger (closer
together) at opposite ends of the plasma, the particles will bounce back and forth between the ends
and be trapped. This magnetic mirror effect is illustrated in Fig. 6. It has been considered as
a method to confine fusion plasmas, as will be discussed in Section 7.1.

The mirror effect requires that the strength of the magnetic field increase along the field lines
(∇B parallel to B, as opposed to ∇B perpendicular to B, which causes the gradient drift derived
above). One can begin this analysis by finding the effect of changing B on the cyclotron motion of
a particle. Because the magnetic force on an orbiting particle is purely radial with respect to the
orbit (ie., it has no torque), the particle’s angular momentum L remains constant:

Constant = L = mv⊥rc =
mv2
⊥

ωc
=

m2

q

v2
⊥
B

=⇒ v2
⊥
B

= constant (52)

Equation (52) can also be derived using the magnetic moment of the orbiting particle.

Consider a particle traveling from the midpoint o of the magnetic field shown in Fig. 6(a) to the
mirror point m on one end. Conservation of the particle’s kinetic energy m(v2

‖ + v2
⊥)/2 dictates

v2
‖o + v2

⊥o = v2
‖m + v2

⊥m . (53)
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(a) (b) 

Bo Bm 

Point m 

Point o 

v||o  
v⊥o  Loss 

cone 
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cone v||o  

v⊥o  

sin θm =    Bo/Bm  

θm 

Figure 6. Magnetic mirror effect. (a) A magnetic mirror field is stronger (the magnetic field
lines are closer together) at the mirror endpoint m than at the central point o. A particle’s velocity
may be separated into the components parallel (v‖) and perpendicular (v⊥) to the magnetic field
direction. (b) The velocity components of particles at the central point o are plotted. If a particle’s
velocity lies within the loss cone, it will be able to escape when it comes to the end of the mirror.
All other particles are reflected back and forth between the ends of the mirror field.

Using Eq. (52) to write v2
⊥m = v2

⊥oBm/Bo and substituting this into Eq. (53) yields

v2
‖m = v2

‖o + v2
⊥o −

Bm
Bo

v2
⊥o (54)

The particle will come to a stop at the mirror point m and reflect back in the other direction if
v‖m = 0. From Eq. (55), this requires

Bo
Bm

=
v2
⊥o

v2
‖o + v2

⊥o
≡ sin2 θm , (55)

in which θ is defined as the mirror angle. Figure 6(b) plots the parallel v‖o and perpendicular v⊥o
components of the velocities of particles at the central point o in the system. θm is the half-angle
of a cone-shaped region in that velocity space. Particles within this loss cone have too much v‖
(or not enough v⊥) to be reflected at the ends of the mirror field, so they will be lost out the ends
of the system. All of the other particles in velocity space are trapped by the mirror field. However,
as will be shown in Section 7.1, collisions between trapped particles can change their velocities and
scatter them into the loss cone, leading to a continual loss of particles from the mirror field.

Due to the magnetic mirror effect, the earth’s magnetic field traps charged particles in the space
surrounding the earth, creating the Van Allen radiation belts. The earth’s magnetic field exits
the north pole, arcs out into space over the equator, and re-enters the south pole. Ions and electrons
ejected from the sun as part of the solar wind are trapped by the earth’s field, traveling along the
field lines in tight spirals. Since the field is stronger (the field lines are closer together) at the earth’s
poles than over the equator, the particles mirror-reflect above each pole, bouncing back and forth
along the field lines in space. Particles in the velocity-space loss cone are not reflected and instead
hit the upper atmosphere, causing colorful atmospheric auroras near the earth’s poles. This effect
is especially pronounced when fresh high-energy charged particles are added during solar storms.
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1.5 Fusion Reactions
For a detailed introduction to fusion reactions, see Nuclear Physics 3.2. Certain small nuclei release
lots of energy when they fuse together, but they must collide at high energies to overcome their
mutual electric repulsion. If ion beams with the optimum energies collide, much more scattering
than fusion occurs (Section 2.1 and [5]) and the ions are lost, along with the input energy invested
in them. Ion beams striking solid fusion targets are dissipated by both scattering and ionization
of the target [2]. Therefore, high-energy ions must be confined so they can collide and scatter
repeatedly until they finally fuse. The scattering creates Maxwellian ion velocity distributions
(Section 2.1). Although electrons steal energy from the ions and waste it via bremsstrahlung and
cyclotron radiation, they must be included to neutralize the ions’ charge and reach high ion densities
and fusion rates. Thus fusion requires a thermal ion-electron plasma.

Below are the main fusion reactions, where p stands for proton, n for neutron, D for deuterium
nucleus, T for tritium nucleus, and 4He or α for helium-4 nucleus. Fusion energy is released as
kinetic energy of the reaction products, listed below in MeV, millions of electron volts.

D + T → 4He (3.5 MeV) + n (14.1 MeV) (56)

The D+T reaction, Eq. (56), is the easiest fusion reaction to carry out, having the largest reaction
rate at the lowest temperature. Unfortunately it requires radioactive tritium and produces high-
energy neutrons, which can activate (induce radioactivity in) surrounding materials in a reactor.

D + D →
{

T (1.01 MeV) + p (3.02 MeV) [50%]
3He (0.82 MeV) + n (2.45 MeV) [50%]

(57)

The D+D reaction (57) can produce either tritium or 3He. If those products fuse with additional
deuterium, the overall fusion energy increases to 21.6 MeV per initial D+D reaction. Note that
neutrons are still produced, both by initial D+D reactions and by subsequent D+T reactions.

D + 3He → 4He (3.6 MeV) + p (14.7 MeV) (58)

D+3He is more attractive, as it yields no neutrons and charged products carry all its fusion energy,
potentially permitting direct conversion to electricity at high efficiencies. However, D+3He is harder
to burn than D+T, and some neutrons are still produced by (lower probability) D+D side reactions.

T → 3He + e− (18.6 keV) [12.3-year half-life] (59)

As shown in Eq. (59), tritium is radioactive, decaying into 3He with a half-life of 12.3 years.
Therefore there is virtually no naturally occuring tritium; tritium must be created if required. If
tritium is available and 3He is desired, the tritium can simply be allowed to decay.

n + 6Li → 4He (2.1 MeV) + T (2.7 MeV) (60)

Reaction (60) is the most common method of producing tritium. In a fusion reactor, a blanket
containing 6Li might surround the plasma. Fusion neutrons produced in the plasma would breed
fresh tritium in the blanket, which could be extracted and used in further rounds of fusion reactions.

Fusion power Pfus per volume is the fusion reaction rate times the energy Efus produced per reaction:

Pfus

volume
= ni1ni2 〈σv〉Efus = 1.602× 10−13 ni1, cm−3 ni2, cm−3 〈σv〉cm3/sec Efus, MeV

Watts

cm3
, (61)

in which ni1 and ni2 are the densities of the fuel ion species. For reactions like D+D with only one
ion species, one should change ni1ni2 → n2

i /2 in Eq. (61); dividing by 2 prevents double-counting
ions. v is the collision velocity between the ions. The reaction cross section σ (gauging how easily
the reaction can happen) is a function of v. Generally the fuel ion species have Maxwellian velocity
distributions with the same temperature Ti, so 〈σv〉 is averaged over the Maxwellians, becoming
simply a function of Ti (Nuclear Physics 3.2). Fusion consumes most of the ions on a timescale

τfus ≡
1

ni 〈σv〉
Fusion time (62)
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As discussed in Section 1.3, bremsstrahlung power losses are important, since the radiation cannot
be reflected back into the plasma and does not depend on the fusion reactor’s geometry. If the
bremsstrahlung losses exceed the power produced by a fusion reaction, that reaction cannot produce
net power in a reactor. Using Eqs. (33) and (61) with ni1 = ni2 = ni/2 for simplicity, one finds

Pbrem

Pfus
= 3.33× 10−18(Z2

i1 + Z2
i2)(Zi1 + Zi2)

√
Te, keV

〈σv〉cm3/secEfus, MeV
. (63)

If there is only one species of ions, one should change (Z2
i1 + Z2

i2)(Zi1 + Zi2) → 2Z3
i in Eq.

(63). Bremsstrahlung and fusion are both two-body collisional processes and hence vary like
n2 × (volume), so their ratio, given in Table 1, is independent of the plasma density and volume:

Reaction T 〈σv〉 Efus Pbrem/Pfus

D+T 20 keV 4.2× 10−16 cm3/sec 17.6 MeV 0.0081

D+D 50 keV 2.1× 10−17 cm3/sec 21.6 MeV 0.10

D+3He 100 keV 1.6× 10−16 cm3/sec 18.3 MeV 0.17

Table 1. Bremsstrahlung power loss fractions for different fusion reactions.

Here Ti = Te ≡ T was assumed for simplicity. The conditions are nearly optimum for each fuel;
for more information on optimization, see [5]. As shown in Table 1, the bremsstrahlung loss
is insignificant for D+T and significant but manageable for D+D and D+3He at typical reactor
conditions. The precise maximum tolerable limit on the ratio Pbrem/Pfus depends on the fractions of
Pbrem and Pfus that can be converted to electricity and the severity of other power loss mechanisms.

Alternative fusion reactions such as the following have been proposed:

p + 11B → 3 4He + 8.7 MeV (requires Ti ≈ 300 keV) (64)
3He + 3He → 4He + 2 p + 12.3 MeV (requires Ti ≈ 1 MeV) (65)

These reactions would produce no neutrons directly and very few neutrons indirectly. Unfortu-
nately, because of the large Z, high temperature, and relatively low energy output per reaction,
the bremsstrahlung loss exceeds the fusion power even under the best of circumstances [5].

The power loss Pescape due to bremsstrahlung, escaping energetic particles, and other losses may be
written in terms of the time τ required to lose the entire thermal energy of the ions and electrons:

Plosses

volume
=

3
2kB(niTi + neTe)

τ
. (66)

After converting fusion power to electricity at efficiency η, there must still be enough power to
compensate for the losses (using Ti = Te ≡ T , ni1 = ni2 = ni/2, and ne ≡ Zavgni for simplicity):

Pfusη > Plosses =⇒ 1

4
n2
i 〈σv〉Efusη >

3
2ni(1 + Zavg)kBT

τ

=⇒ niτ >
6(1 + Zavg)

η

kBT

Efus

1

〈σv〉
Lawson
criterion

(67)

For like-particle reactions such as D+D, the coefficient 6 in Eq. (67) should be replaced by a 3.
Using Table 1 and a thermal conversion efficiency η = 0.4 yields

niτ >


8× 1013 sec/cm3 for D+T
2× 1015 sec/cm3 for D+D
1× 1015 sec/cm3 for D+3He

(68)

Again, D+T is easier to burn that D+D and D+3He. As Section 5 will show, stars are so large
that they efficiently trap radiation and particles within their plasma and thus can generate power
from very difficult fusion reactions such as p+p that could not be exploited in a man-made reactor.
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2 Transport
Collisions between charged ions can result in Coulomb scattering instead of fusion, so one must
consider ion-ion Coulomb collisions. Ion-electron and electron-electron collisions are also important,
due to their critical roles in energy transport within the plasma. This section will analyze the effect
of collisions on particle diffusion in both velocity-space and actual physical space. Danger Will
Robinson: many transport properties vary by a factor of 2 or so among various plasma textbooks.

2.1 Velocity-Space Transport: Like-Particle Collisions

Collision Times

The characteristic times over which like-particle (ion-ion or electron-electron) collisions produce
effects are easily estimated. If two particles use the thermal energy kBT of their random motion to
fight the electrostatic repulsion between them, the closest distance ro they can get to each other is

(Ze)2

4πεoro
= kBT =⇒ ro =

(Ze)2

4πεokBT
Landau length (69)

The particles’ scattering cross section would be σ = πr2
o if they bounced off each other like hard

spheres of radius ro. Cumulative small-angle scattering from long-range collisions affects the particle
velocities about ln Λ faster than large-angle scattering from short-range collisions. Including this
Coulomb logarithm factor (which will be calculated in a moment) yields

σ = πr2
o ln Λ =

ln Λ(Ze)4

16πε2o(kBT )2
. (70)

Using the thermal velocity vt =
√
kBT/m, collisions act on a timescale

τcol =
1

nσvt
=

16π
√
mε2o(kBT )3/2

ln Λn(Ze)4
. (71)

Thus the collision times due to ion-ion and electron-electron collisions are

τii =
16π
√
miε

2
o(kBTi)

3/2

ln Λni(Ze)4
≈ 5.0× 1011

T
3/2
i, keV

Z4 ln Λni, cm−3

√
mi

mp
sec (72)

τee =
16π
√
meε

2
o(kBTe)

3/2

ln Λnee4
≈ 1.1× 1010

T
3/2
e, keV

ln Λne, cm−3

sec (73)

If the velocity distribution of particles is initially non-Maxwellian (e.g., isotropic and monoener-
getic, anisotropic Maxwellian with different temperatures in different directions, etc.), like-particle
collisions will turn it into an isotropic Maxwellian within a time ∼ τcol. The collision time is calcu-
lated using the temperature of the final Maxwellian, T = (3/2) 〈E〉, where 〈E〉 is the (initial and
final) average energy of the particles. Particles are usually assumed to have a Maxwellian velocity
distribution, because τii and τee are almost always shorter than the fusion and confinement times.
For example, combining Eqs. (62) and (72) produces

τii
τfus

=
16π
√
miε

2
o(kBTi)

3/2 〈σv〉
ln Λ(Ze)4

≈ 5.0× 1011
T

3/2
i, keV 〈σv〉cm3/sec

Z4 ln Λ

√
mi

mp
(74)

Note that this ratio is independent of the density, since collisions and fusion are both two-body
processes. Using Table 1 and Eq. (74), collisional scattering occurs 800x faster than fusion for
D+T, 4000 faster for D+D, and 600x faster for D+3He.
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Coulomb Logarithm

Now the secret origins of the Coulomb logarithm will be revealed. As discussed in the classical
mechanics summary, interactions of two moving particles with masses m1 and m2 may be simplified
by using the reduced mass mr ≡ m1m2/(m1 + m2) and relative collision velocity vr between the
particles. This transforms the problem to that of an incident particle with mass mr and velocity
vr interacting with a fixed target particle, as shown in Fig. 7(a). In the figure, the incident
particle approaches the target particle with an impact parameter b, and it receives a net sideways
momentum change ∆p. ∆p may be found from the peak Coulomb force between the particles
F ≈ q1q2/(4πεob

2) (for particle charges q1 and q2) and the duration of the encounter ∆t ≈ 2b/vr:

∆p ≈ F ∆t ≈ q1q2

2πεobvr
. (75)

(a) (b) 

Target 
particle 

Incident particle’s 
original trajectory 

p 
New trajectory 

Original 
trajectory 

Final 
trajectory 

b 
~b ~b 

~b 

b Δp  

vrτcol  

Figure 7. Scattering due to collisions between particles. (a) Due to the Coulomb force
between an incident particle with momentum p and a stationary target particle, the incident particle
experiences a sideways deflection in momentum ∆p. If the impact parameter is b, the distance of
closest approach is ∼ b and the path length over which the force is felt is ∼ 2b. (b) An incident
particle with velocity vr passing through a population of target particles feels a deflecting force
from each target particle. The impact parameter differs for each target particle. The smallest
impact parameter allowed by quantum physics is the DeBroglie wavelength, and the largest impact
parameter over which electrostatic force can be felt is the Debye shielding distance. After the
incident particle travels for a time τcol or a distance vrτcol, the cumulative deflection of its trajectory
will be 90o.

Debye shielding limits the maximum impact parameter to bmax = λD, while quantum effects provide
a minimum value bmin = λDeBroglie from Eq. (32). Equation (75) is the small-angle limit of the result
derived more rigorously for Coulomb scattering in the classical mechanics summary. If the incident
particle undergoes multiple collisions [Fig. 7(b)], it will execute a random walk in momentum-
space, taking a step of size ∆p each collision. From the mathematics summary, the cumulative
mean square of the momentum deviation,

〈
(∆P )2

〉
, grows linearly with the number of steps, and

it can be calculated using a method similar to that in Section 1.3:

〈
(∆P )2

〉
=

Number of collisions in time ∆t︷ ︸︸ ︷∫ bmax=λD

bmin=λDeBroglie

(2πb db) (nvr∆t)

Scattering per collision︷ ︸︸ ︷
(∆p)2

= ∆t
q2

1q
2
2n

2πε2ovr

∫ λD

λDeBroglie

db

b
= ∆t

q2
1q

2
2n ln Λ

2πε2ovr
, (76)
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where the Coulomb logarithm is defined as

ln Λ ≡ ln

(
λD

λDeBroglie

)
= ln

(√
meεo kBT

eh̄
√
n

)
≈ 31 + lnTkeV −

1

2
lnncm−3 . (77)

Although Eq. (77) uses the electron mass, the results are essentially the same for ions. The
Coulomb logarithm varies so slowly it is usually treated as a constant. Typical values of ln Λ are
20 in a magnetic fusion plasma, 5 for inertial confinement fusion, and 2 in the core of a star.

The cumulative scattering of the particle reaches 90o when the net deviation equals the particle’s
original momentum, or

〈
(∆P )2

〉
= (mrvr)

2. Using Fig. 7(b) and Eq. (76), this occurs after a time

τcol =
2πε2om

2
rv

3
r

q2
1q

2
2n ln Λ

. (78)

For collisions between like particles of charge Z, mass m, and thermal velocity vt, the reduced mass

mr = m/2 and relative velocity vr ≈ 2vt = 2
√
kBT/m may be substituted into Eq. (78):

τcol =
4π
√
mε2o(kBT )3/2

ln Λn(Ze)4
. (79)

(Eq. (71) agrees well with Spitzer and Braginskii, but Eq. (79) from this more detailed
derivation is ∼4x too small. How can that be fixed?)

Runaway Electrons

For electron-electron collisions, the cross section from Eq. (70) may be rewritten in terms of the
electron energy Ee, kBT → mrv

2
e/2 = Ee/2:

σ =
ln Λe4

4πε2oE
2
e

. (80)

Due to scattering, electrons will tend to lose their energy Ee over a mean free path length lmfp ≡
1/(neσ). Note that the cross section decreases rapidly and hence the mean free path increases
rapidly with increasing Ee; higher energy electrons scatter much less and can travel much further.
If a sufficiently strong electric field E is applied, high-energy electrons will gain more energy per
distance from the electric field (eE) than they lose on average due to collisions (Ee/lmfp). Thus
there will be runaway electrons that are accelerated by the field to higher and higher energies if

eE >
Ee
lmfp

= Eeneσ =
ln Λnee

4

4πε2oEe
, or

Ee >
ln Λnee

3

4πε2oE
. (81)

For a typical magnetic fusion plasma with ln Λ = 20 and ne = 1 × 1020 m−3, even a relatively
weak electric field E = 10 Volts/m would cause electrons with energies Ee > 5 keV to run away.
The runaway electrons would gain a large amount of energy from the field, then waste it by
bremsstrahlung or cyclotron radiation or by escaping the confinement system. This limits the
utility of ohmic heating, in which an electric field drives a current through a plasma of nonzero
resistivity to heat the plasma to fusion temperatures. If one attempts to heat a plasma above ∼ 1
keV by this method, too much electron runaway will occur.
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2.2 Velocity-Space Transport: Unlike-Particle Collisions

The most prevalent unlike-particle collisions are ion-electron collisions. These collisions are char-
acterized by two different time constants, which are defined here as τei and τie.

The electron-ion collision time τei is defined as the time required for electrons to change their
direction of motion due to collisions with ions. This process is very similar to electrons being
scattered by collisions with other electrons, so the collision time τee from Eq. (73) may be modified
for this purpose. In the present case, electrons collide with ions having charge Ze and density ni
instead of with electrons having charge −e and density ne. If Z is the average ion charge, the
electron and ion densities are related by ne = Zni. Therefore, one can make the substitution
ne → Z2ni = Zne in Eq. (73) to obtain

τei =
16π
√
meε

2
o(kBTe)

3/2

ln ΛneZe4
≈ 1.1× 1010

T
3/2
e, keV

Z ln Λne, cm−3

sec (82)

Similarly, the ion-electron collision time τie is the time for angular scattering of ions by electrons.
However, ions are more massive than electrons and hence are harder to scatter, so this time is
longer than the corresponding τei. τie is also the timescale on which ion-electron collisions affect
the relative energies of the ion and electron populations (not merely their directions of motion). It
may be found by applying Eq. (76) to ion-electron collisions. The change in momentum corresponds
to a change ∆Ei in an ion’s energy:

2mi∆Ei =
〈

(∆P )2
〉

= ∆t
Z2e4n ln Λ

2πε2ovr
. (83)

For comparable ion and electron temperatures, electrons move much faster than ions, so the relative

collision velocity is vr ≈ vte =
√
kBTe/me. The energy change can be equal to the average electron

energy, ∆Ei = 3kBTe/2, after a time

τie =
6πε2omi(kBTe)

3/2

ln ΛneZ2e4√me
≈ 8.0× 1012

T
3/2
i, keV

Z2 ln Λne, cm−3

mi

mp
sec (84)

For Z = 1 and Ti = Te, the ratios of the collision times are

τee : τei : τii : τie ∼ 1 : 1 :

√
mi

me
:
mi

me
. (85)

Thus electrons quickly form a Maxwellian velocity distribution due to collisions with other electrons
and nearly elastic angular scattering off ions. On a slower timescale, ions assume a Maxwellian
distribution due to ion-ion collisions. On the slowest timescale, energy is transferred between the
ion and electron populations if they are at different temperatures.

If Ti 6= Te, the power per volume transferred from ions to electrons is

Pie
volume

≈
3
2nikB (Ti − Te)

τie

=
nineZ

2e4 ln Λ
√
mime

(2π)3/2ε2o(miTe +meTi)3/2
(Ti − Te) (86)

≈ 2.41× 10−29Z2ni cm−3 ne cm−3 ln Λ
mp

mi

(Ti, keV − Te, keV)

T
3/2
e, keV

Watts

cm3
, (87)

where Eqs. (86) and (87) are the results of Sivukhin and Landau’s more accurate calculations [6, 7].
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Energy loss by very high-energy ions is a special case of interest. As shown in Eqs. (56-60), fusion
products are emitted with ∼MeV energies, and fuel ions can also be injected into a plasma as a
high-energy beam. For ions with velocity vi � vte, the collision velocity is vr ≈ vi. Using Eq. (83),
high-energy ions lose all their energy ∆Ei = miv

2
i /2 to electrons after a slowing-down time

τslowing down =
2πε2om

2
i v

3
i

Z2e4ne ln Λ
. (88)

During this time, the ions move a distance

lslowing down ≈ 1

2
viτslowing down =

πε2om
2
i v

4
i

Z2e4ne ln Λ

=
4πε2oE

2
i

Z2e4ne ln Λ
≈ 4× 1022

E2
i, MeV

Z2ne, cm−3 ln Λ
m (89)

2.3 Classical Spatial Diffusion

Spatial Diffusion without or Parallel to Magnetic Field

Particles diffuse in physical space as well as in velocity space. This process is very important,
because particles escape from a plasma by diffusion, and also because particles diffusing within a
plasma carry thermal energy (conducting heat) and charge (producing an electric current). It is
straightforward to calculate spatial particle diffusion in a plasma without a magnetic field. The
results are also applicable to particles diffusing parallel to a magnetic field in a magnetized plasma,
since a magnetic field does not affect motion in the parallel direction (there is no v ×B force).
Particles diffusing perpendicular to a magnetic field will be treated subsequently.

As shown in the applied mathematics summary, gradients ∇n in a particle concentration induce
particle fluxes nv which are related by a particle diffusion coefficient D:

nv = −D∇n Fick’s law (90)

Inserting Eq. (90) into the continuity equation (7) produces the standard diffusion equation:

∂n

∂t
= D∇2n Diffusion equation (91)

Equation (91) implies that during a time τ , particles diffuse a typical distance L ∼
√
Dτ .

As shown in the math summary, the diffusion coefficient may be found from the average particle
speed (in this case vt) and average distance lmfp or time between particle collisions. For diffusing
electrons, electron-ion and electron-electron collisions are of comparable importance, τei = τee/Z.
In contrast, ion-ion collisions cause ion diffusion much faster than ion-electron collisions, τii ∼√
me/mi τie. Using τei to approximately account for electron collisions with both ions and electrons,

the electron and ion diffusion constants parallel to (or without) a magnetic field are

D‖e =
1

3
vtelmfp =

1

3
v2
teτei =

1

3

kBTe
me

τei D
‖
i =

1

3

kBTi
mi

τii (92)

From the solid state physics summary, the thermal conductivity due to electrons is their specific
heat capacity 3nekB/2 multiplied by their diffusion coefficient. As shown in Braginskii [7], the
actual thermal conductivity is 6.4 times larger than this simple predicted value:

κ‖e ≈ 6.4

(
3

2
nekB

)
D‖e = 3.2

nek
2
B
Te

me
τei . (93)
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Ions carry the same energy as electrons (∼ kBT ) but move ∼
√
mi/me more slowly. Therefore the

κ‖ due to ions is ∼
√
mi/me times smaller than that of electrons and may be neglected.

The electrical resistivity η of electrons in a plasma is predicted by the Drude model from solid state
physics. In brief, an applied electric field E gives an acceleration eE/me to electrons, and collisions
cause a deceleration v/τei, where v is the electron velocity. Balancing these two effects, the steady-
state electron velocity is v ≈ eEτei/me. The current density is J = neev ≈ (nee

2τei/me)E ≡ E/η.
Braginskii [7] has shown that runaway electrons, which are not particularly affected by collisions,
lower the actual value of the resistivity by a factor of 2:

η‖e =
1

2

me

nee2τei
= 1.6× 10−9 ln Λ

T
3/2
e keV

Ω-m . (94)

Sometimes the electrical conductivity σ ≡ 1/η is used. For a typical fusion plasma with ln Λ = 20
and Te = 10 keV, the resistivity is 1.0 × 10−9 Ω−m, or approximately 18 times lower than the
resistivity of room-temperature copper. Thus plasmas are extremely good conductors. Because
ions are slower than electrons, their contribution to the parallel electrical resistivity can be ignored.

Spatial Diffusion Perpendicular to Magnetic Field

Parallel to a magnetic field, particles diffuse by traveling a distance lmfp between collisions. Per-
pendicular to B, however, particles must remain in the same cyclotron orbit between collisions,
so they can only diffuse a distance ∼ rc each collision time. Collisions throw particles from one
cyclotron orbit to an adjacent orbit (Fig. 8). Thus the electron and ion diffusion constants are

D⊥e ≈
(
rce
lmfp

)2

D‖e =
2

(ωceτei)2
D‖e =

1

3

r2
ce

τei
D⊥i ≈

2

(ωciτii)2
D
‖
i =

1

3

r2
ci

τii
(95)

Note that ions diffuse ∼
√
mi/me faster than electrons perpendicular to a magnetic field, because

ions have a larger cyclotron radius than electrons.

Equation (95) assumes that the particles have plenty of time for cyclotron motion in between
collisions, or ωcτcol � 1. To be more general, Eq. (95) may be modified so that it approaches D‖

in the limit ωcτcol � 1, or in other words for magnetic fields too weak to affect the particles:

D⊥ =
D‖

1 + (ωcτcol)2/2
. (96)

Thermal conductivity is mediated primarily by electrons parallel to a magnetic field but ions per-
pendicular to B, due to the different relative ion and electron diffusion constants. Including a factor
of
√

2 from Braginskii’s more detailed calculations [7], the perpendicular thermal conductivity is

κ⊥i ≈
√

2

(
3

2
nekB

)
D⊥i =

√
2
nik

2
B
Ti

miω2
ciτii

. (97)

Electrons moving perpendicular to B cannot run away, so the resistivity is simply the Drude value:

η⊥e =
me

nee2τei
= 3.2× 10−9 ln Λ

T
3/2
e keV

Ω-m . (98)
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Figure 8. Classical diffusion perpendicular to a cylindrical magnetic field. (a) A confined
plasma can assume a cylindrical shape, with magnetic field lines running longitudinally through
the plasma. (b) In this cross section of the cylindrical plasma, the field lines are perpendicular to
the page and plasma particles execute circular cyclotron orbits. Collisions bump particles from one
orbit to another, letting the particles diffuse across the field lines via a random walk.

Bohm Diffusion

Early experiments with magnetic confinement found perpendicular diffusion rates much larger than
predicted above. This enhanced diffusion is termed Bohm diffusion and is caused by fluctuating
nonzero electric fields in the plasma. Random thermal motion of electrons relative to the ions in a
plasma can create a maximum electric potential φmax:

eφmax = kBTe . (99)

Assuming this potential difference exists between the center and edge of a cylindrical plasma of
radius a, the corresponding maximum electric field is

Emax ≈
φmax

a
=

kBTe
ea

. (100)

Using Eq. (47), the E×B drift associated with this electric field creates an outward particle flux

nv⊥ = n
|E×B|
B2

<
nEmax

B

<
kBTe
eB

n

a
≈ −kBTe

eB
∇n , (101)

where the rough approximation ∇n ≈ −n/a was made. Equation (101) corresponds to a maximum
diffusion coefficient D ≈ (kBTe)/(eB). The experimental data for Bohm diffusion is best matched
by a diffusion coefficient DB that is a fraction of this value:

DB ≈ 1

16

kBTe
eB

=
1

16

v2
te

ωce
. (102)

The Bohm diffusion constant is generally larger than the classical D⊥. Moreover, DB varies like
1/B, whereas the classical diffusion constant varies like 1/B2, so strong magnetic fields are less useful
for plasma confinement than in the classical case. It is useful to note that DB/D

⊥
classical ≈ ωcτcol/11.

The Bohm diffusion time, or time for particles to diffuse across the radius a by this mechanism, is

τB ≡ a2

DB
= 1.6× 10−2 a

2
mBT
Te, keV

. (103)
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For typical values a = 0.1 m, B = 10 T, and Te = 20 keV, the Bohm time is 8×10−5 sec. To satisfy
the Lawson criterion for D+T fusion in Eq. (68) would then require a density of 1018 ions/cm3,
much higher than is practical in magnetic fusion (∼ 1014−1015 ions/cm3). By carefully minimizing
electric fields in the plasma, Bohm diffusion can be prevented. Confinement times at least 100
times longer than τB have been obtained in experiments.

2.4 Neoclassical Spatial Diffusion

General principles of toroidal magnetic confinement

In a cylindrical plasma, particles tend to escape at the ends, so magnetic fusion plasmas are usually
bent into a doughnut or torus that does not have ends, as shown in Fig. 9. The central axis
is defined as the line running through the center of the doughnut, and the major radius R is
the distance from the central axis to the center of the tube of plasma. The minor radius a is
the half-width of the tube of plasma. Sometimes we will mention the major circumference, 2πR
(more or less), which travels 360o around the central axis in the toroidal direction, or the minor
circumference, 2πr, which encloses the tube of plasma in the poloidal direction. Spatial diffusion
is altered by the bent geometry of the torus and is called neoclassical diffusion [4, 8].

Toroidal 
direction 

Poloidal 
direction a 

R 

Figure 9. Confinement of a plasma in a toroidal magnetic geometry. To avoid having
particles freely escape from the ends of a cylindrical plasma, the plasma can be bent into a toroidal
shape without ends. The torus has a major radius R and minor radius a. The dotted line through
the hole of the torus is called the central or major axis.

If magnetic field lines are bent into a circle, they form a toroidal field Bt, as shown in Fig. 10(a).
Although particles can no longer escape along the field lines, there is a diabolical way in which
they can escape across the field lines. Field lines with a greater circumference are more stretched
out and hence weaker than those with a smaller circumference, so ∇B points inward toward the
central axis. Particles moving along the field lines experience the ∇B drift from Eq. (51). They
also undergo the curvature drift from Eq. (49). Using the approximations v‖ ∼ v⊥ ∼ vt and
∇B ∼ B/R, the total drift velocity varies roughly like

(vdrift) = (vdrift)∇B + (vdrift)curvature ∼
{
− rce

R vteẑ for electrons
+ rci

R vtiẑ for ions
(104)
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Figure 10. Particles freely escape from a plasma with only a toroidal magnetic field Bt.
(a) A toroidal field is stronger toward the inner edge of the plasma, causing a ∇B drift of electrons
downward and ions upward. This charge separation produces a downward electric field, which
causes an outward E ×B drift for both electrons and ions and allows them to escape. (b) Adding
a poloidal component Bp to the magnetic field makes the field lines spiral around the torus, mixing
different regions of the plasma and preventing the charge separation and hence the drift-associated
particle losses.

Electrons drift downward while ions drift upward [Fig. 10(a)]. This separation of charges creates
a vertical electric field, which then produces an outward E×B drift [Eq. (47)] for both ions and
electrons. Thus ions and electrons drift outward across the magnetic field lines and escape.

This problem is solved by adding a poloidal component Bp so the magnetic field lines spiral around
the torus [Fig. 10(b)]. Particles move along the field lines and are forced to continually travel
around the minor circumference of the torus, preventing the separation of charges and the drift
losses.

A useful definition is the safety factor qs, the number of times a field line goes around the major
circumference of the torus before it completes one spiral around the minor circumference:

qs ≡
a

R

Bt
Bp

Safety factor (105)

qs is called the safety factor because it must be >1 to prevent instabilities, as Section 3.3 will show.

Adding Bp reduces but does not entirely prevent particle diffusion across the field lines. Particle
diffusion depends on the relative rate of collisions, falling into the three categories discussed next.
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Pfirsch-Schlüter regime

In the Pfirsch-Schlüter regime [Fig. 11(a)], many collisions occur before a particle travels once
around the major (or minor) circumference of the torus. Thus particles diffuse along the field lines
with diffusion constant D‖ ∼ v2

t τcol from Eq. (92).

As illustrated in Fig. 11(b), the upward drift from Eq. (104) moves ions in the upper half of
the torus toward the edge of the plasma, while ions in the lower half move closer to the center of
the plasma. (All of this is true for electrons too, but with the signs reversed.) Therefore, as ions
follow the spiral field lines and circulate between the upper and lower halves of the torus, they
alternatively drift away and toward the center of the plasma. This is a random walk process, where
the duration of a step is the average time an ion spends in the upper or lower half.

From the definition of the safety factor qs, a particle must travel a distance qsπR around the torus
before it spirals from the top half to the bottom half [Fig. 11(b)]. Usually only the order of
magnitude qsR, called the connection length, is used. (What’s a factor of π among friends?)
The step duration τPS is the time required for a particle to diffuse this far along the field lines:

τPS ∼
(qsR)2

D‖
∼ (qsR)2

v2
t τcol

(106)

The corresponding length LPS of a random walk step is the average distance a particle drifts at
velocity vd from Eq. (104) during the time τPS it spends in the upper or lower half of the torus:

LPS = vdriftτPS ∼
rc
R
vtτPS (107)
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Figure 11. Neoclassical diffusion in a torus. (a) Diffusion in a toroidal plasma depends on the
collision time τcol. Long collision times cause banana diffusion, medium collision times cause plateau
diffusion, and short collision times cause Pfirsch-Schlüter diffusion. (b) In the high-collisionality
Pfirsch-Schlüter regime, collisions make particles diffuse along the spiral magnetic field lines such as
the dashed line shown. The vertical drift draws particles in the upper half of the torus closer to the
edge and those in the lower half of the torus closer to the center of the plasma. Particles alternate
between these two situations after diffusing a distance qsπR ∼ qsR along the field lines. (c) In the
low-collisionality banana regime, particles attempt to follow the field lines around the plasma as
they travel around the torus. However, the magnetic field is stronger near the central axis of the
torus, causing some particles to mirror-reflect and assume banana-shaped orbits of width Lbanana.
Collisions are infrequent and tend to knock particles from one banana orbit to another. Note that
particles actually travel around the torus while completing a banana orbit, instead of staying in
one place as illustrated.
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Combining Eqs. (106) and (107), the particle diffusion constant perpendicular to the magnetic field
in the Pfirsch-Schlüter regime is

DPS ∼
L2

PS

τPS
∼ q2

s

r2
c

τcol
Pfirsch-Schlüter diffusion (108)

This result is larger than the classical D⊥ from Eq. (95) by a factor of ∼ q2
s . Since the above

derivation assumed that particles must travel the distance qsR around the torus by collisional
diffusion, the Pfirsch-Schlüter answer is valid when the mean free path is much shorter,

vtτcol < qsR Pfirsch-Schlüter regime (109)

This condition is typical of the low-temperature edge of a tokamak plasma.

Banana regime

When collisions are very infrequent, particles following the spiral field lines can make complete
orbits around the minor circumference of the torus before colliding. Typically the magnetic field is
inversely proportional with distance from the central axis, so orbiting particles encounter stronger
fields as they approach the central axis. Particles with too much velocity v⊥ and too little v‖ relative
to the field lines will mirror reflect in the stronger field rather than complete an orbit of the minor
circumference. These particles are said to be trapped, and their mirror-reflected orbit assumes a
banana shape [Fig. 11(c)]. Thus this low-collisionality regime is called the banana regime.

Using Eq. (55), particles will be trapped in mirror orbits if their velocity components are

v‖
v⊥

<

√
Bm
Bo
− 1 ∼

√
R+ a

R
− 1 =

√
a

R
. (110)

The fraction of particles in velocity space that are trapped is

ftrapped ∼
√
a

R
. (111)

Collisions that scatter particles by an angle ∆θ ∼
√
a/R in velocity space can cause a particle to

escape from a trapped orbit to a fully circulating orbit and get trapped again in a different orbit.
Recall that τcol was defined as the time for a particle’s velocity to change by π/2 ∼ 1 radian.
Because angular scattering by collisions is a diffusional process in velocity space, the time required
is proportional to the square of the net amount of scattering. Therefore the effective collision time
for particles to go from one trapped orbit to another is

τeff ∼ τcol(
∆θ

1
)2 ∼ τcol

a

R
. (112)

Trapped particles have most of their velocity in v⊥, so v⊥ ∼ vt. From Eq. (110), the parallel
velocity must then be

v‖ ∼
√
a

R
v⊥ ∼

√
a

R
vt . (113)

Particles must travel on the order of a connection length qsR along the magnetic field lines to trace
out the arc of a banana orbit. The time required to do this is

τbanana ∼
qsR

v‖
∼ qsR

vt

√
R

a
. (114)
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One might think that trapped particles, on encountering the stronger magnetic field closer to the
central axis, would return following the arc along which they came. In fact, the particles experience
the vertical drift vdrift ∼ vtrc/R from Eq. (104) during their transit, so the return arc is displaced
by a vertical distance Lbanana from the original arc. The net orbit assumes a banana shape with a
width comparable to the vertical displacement,

Lbanana ∼ vdriftτbanana ∼ qsrc

√
R

a
. (115)

Particles diffuse out of the torus by being knocked by collisions from one trapped banana orbit to
the next, taking a step of length ∼ Lbanana every ∼ τeff . This is a random walk process governed
by the spatial diffusion coefficient

Dbanana ∼ ftrapped
L2

banana

τeff
∼ q2

sr
2
c

τcol

(
R

a

)3/2

Banana diffusion (116)

Note that Eq. (116) accounts for the fraction ftrapped of the particles that are trapped. Untrapped
particles diffuse at a much slower rate determined by D ∼ DPS and may be neglected here [8].

The banana regime requires that trapped particles have enough time to complete banana orbits
before they collide, τeff > τbanana. Using Eqs. (112) and (114), this means

τeff > τbanana =⇒ τcol >
qsR

vt

(
R

a

)3/2

Banana regime (117)

as shown in Fig. 11(a). The banana regime is typical of the hot center of a tokamak plasma.

A particularly useful result of neoclassical transport may be derived by noting the forces on particles
in the toroidal direction. Particles are accelerated by a v ×B force and decelerated by collisions.
Balancing these forces yields

−nZeBpvr =
nmv‖
τcol

, (118)

for particles of charge Z and radial velocity vr. Assuming that vr arises from diffusion and using
the ideal gas law dp = dn kBT , Eq. (90) may be written as

nvr = −Dbanana
dn

dr
= − Dbanana

kBT

dp

dr
(119)

The toroidal flow of particles creates an electric current density Jb:

Jb = Zenv‖ = − (Ze)2nBpvrτcol

m
[using Eq. (118)]

=
(Ze)2Bpτcol

m

Dbanana

kBT

dp

dr
[using Eq. (119)]

=

∣∣∣∣dpdr
∣∣∣∣√ a

R

1

Bp
Bootstrap current (120)

Equation (120) made use of Eqs. (116) and (105) as well as rc ≡
√
mkBT/(ZeB) ≈

√
mkBT/(ZeBt)

(since Bt � Bp typically). The toroidal current in Eq. (120) creates a poloidal magnetic field that
compresses the plasma, steepening the pressure gradient |dp/dr| and further increasing the current.
Because of this positive feedback, the current is called the bootstrap current. As will be shown in
Section 7.2, tokamaks require a toroidal plasma current, and the bootstrap current might provide
most (but not all) of that current.
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Figure 12 shows another way to view the bootstrap current. Trapped particles make a banana-
shaped orbit in the poloidal direction and have the corresponding motion following the spiral field
lines in the toroidal direction. Typically the particle density increases toward the central axis, so
a banana orbit closer to the central axis has more particles than one further out. Where the two
orbits intersect, there are more particles from the inner orbit traveling in one direction than from
the outer orbit traveling in the other direction. This net flow of charged particles, caused by the
density (or equivalently pressure) gradient, creates the bootstrap current in the toroidal direction.
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Figure 12. Bootstrap current. (a) Cross-sectional view and (b) side view. Typically the
particle density increases with decreasing radial location, so inner banana orbits have more particles
than outer banana orbits. Thus where inner and outer banana orbits overlap, there is a net flow of
particles in one direction and hence an electric current, the toroidal bootstrap current Jbootstrap.

Plateau regime

Intermediate in collisionality between the banana and Pfirsch-Schlüter regimes,

qsR

vt
< τcol <

qsR

vt

(
R

a

)3/2

Plateau regime (121)

trapped particles only have time to complete a fraction of a banana orbit on average before being
scattered by a collision. The probability of completing a banana orbit is ∼ τeff/τbanana and may be
factored into the diffusion constant:

Dplateau ∼
τeff

τbanana
Dbanana ∼

qsr
2
cvt
R

Plateau diffusion (122)

Because this diffusion constant is independent of the collision time and thus forms a flat line in Fig.
11(a), this is called the plateau diffusion regime [8]. It is comforting to note that Dplateau in Eq.
(122) matches both DPS [Eq. (108)] evaluated at the boundary value τcol = qsR/vt and Dbanana

[Eq. (116)] at the boundary value τcol = (R/a)3/2qsR/vt.
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3 Magnetohydrodynamics (MHD)
Magnetohydrodynamics (MHD) lumps ions and electrons together and treats a plasma like a single
homogeneous fluid. While this simplification ignores much of the microscopic behavior of the
plasma, it is very useful for analyzing macroscopic plasma phenomena. This section will present
the basic principles of MHD and then use those to analyze macroscopic plasma behavior such as
the forces on plasmas in magnetic confinement systems and instabilities of those plasmas.

3.1 MHD Equations

In MHD, the two-fluid equations for ions and electrons are combined together to treat the plasma
as a single fluid with the following properties:

ρ ≡ nimi + neme ≈ nimi Mass density (123)

ρcharge ≡ Zieni − ene Charge density (124)

j ≡ e(Zinivi − neve) Electric current (125)

v ≡ nimivi+nemeve

nimi+neme
≈ vi Fluid velocity (126)

p ≡ pi + pe = nikBTi + nekBTe Pressure (127)

η ≡ η
‖
e [Eq. (94)] or η⊥e [Eq. (98)] Electrical resistivity (128)

In this single-fluid model, the momentum equation becomes

ρ

(
∂

∂t
+ v · ∇

)
v = j×B−∇p+ ρg Momentum equation (129)

Including the Lorentz force, Ohm’s law may be written as

E + v ×B = ηj Ohm’s law (130)

Conservation of mass takes the usual form for a fluid:

∂ρ

∂t
+∇·(ρv) = 0 Conservation of mass (131)

Conservation of charge takes a similar form:

∂ρcharge

∂t
+∇ · j = 0 Conservation of charge (132)

For adiabatic compression, the MHD equivalent of Eq. (10) is

p

ργ
= constant =⇒ dp = γ

p

ρ
dρ Adiabatic relation (133)

Using the ideal gas law for a plasma with volume V , Eq. (133) may be rewritten as

T V γ−1 = constant (134)

As shown by Eq. (134), a plasma may be heated by compressing it, for example by gravity (Section
5.3), implosion (Section 6.2), or magnetic fields (Section 7.3). The work pdV that is put into the
plasma during compression raises the thermal energy.

If the plasma is incompressible, Eq. (131) becomes

∇ · v = 0 For incompressible fluid (135)

Strong time-varying electric fields are generally not important in MHD, so Ampère’s law becomes

∇×B = µoj Ampère’s law for MHD (136)
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For plasmas in equilibrium, terms involving ∂/∂t, v, and E may be neglected. Gravity is much
weaker than the other forces of interest and may be ignored. Equation (129) may be simplified
under these conditions to show that the particle pressure and magnetic forces must balance:

∇p = j×B Equilibrium pressure balance (137)

=
1

µo
(∇×B)×B using Eq. (136)

= −∇ B2

2µo
+

(B · ∇)B

µo
(138)

The first term in Eq. (138) describes the pressure B2/(2µo) of a magnetic field. This is also the
energy density of a magnetic field. (Energy per volume and force per area are equivalent units of
measure.) In some respects, a magnetic field may be regarded as a massless gas with this pressure.
The second term in Eq. (138) represents the tension force B2/µo of magnetic field lines. If B does
not vary along B, this term is zero. In addition to the simple pressure they exert, magnetic field
lines behave somewhat like rubber bands, trying to be as short and straight as possible.

A simple yet powerful implication of Eq. (137) is that in a plasma in equilibrium, the current and
magnetic field are both perpendicular to the pressure gradient. In other words, they both lie on
surfaces of constant pressure, no matter how complicated the geometry may be.

Neglecting the tension term, equilibrium at the boundary of a plasma with particle pressure p,
internal magnetic pressure B2

int/(2µo) and external magnetic pressure B2
ext/(2µo) requires

p+
B2

int

2µo
=

B2
ext

2µo
(139)

A useful quantity is β, defined as the ratio of particle pressure to external magnetic field pressure:

β ≡ Particle pressure

External magnetic pressure
=

nikBTi + nekBTe
B2

ext/2µo
. (140)

At typical fusion reactor temperatures, 〈σv〉 increases like T 2
i , so the fusion power varies like

Pfus ∝ n2
i 〈σv〉 ∝ n2

iT
2
i ∝ p2 ∝ β2B4 , (141)

Increasing β allows a given magnetic field to confine more plasma and hence produce more fusion
power. Because large electromagnets are expensive to build and/or operate, β should be as high as
possible. Successful confinement requires β ≤ 1. For Ti = Te and Z = 1, this limits the density to

ni = ne ≤ 1.24× 1015 βB
2
T

TkeV
cm−3 (142)

For representative values B = 20 T and Ti = Te = 20 keV, this density limit is ni = ne < 2.5×1016

cm−3. As will be shown in Section 7.2, an internal magnetic field is necessary to prevent instabilities.
This internal magnetic pressure takes away from potential internal plasma particle pressure and
makes β � 1, significantly reducing the densities from the upper bounds calculated here.

A toroidal plasma tends to expand outward away from the central axis due to two forces. As shown
in Fig. 13(a), poloidal magnetic field lines are bunched together along the inner edge of the torus
and spaced out along the outer edge, creating a net outward difference in magnetic pressure called
the hoop force. In addition, Fig. 13(b) shows that a torus has more surface area directed away
from the central axis than toward it, so a uniform plasma pressure acting on these surfaces exerts
a net outward force, named the tire tube force after its more commonplace manifestation. As
illustrated in Fig. 13(c), a vertical magnetic field Bz must be applied to create an inward Jt ×Bz

force that counteracts these outward forces and holds the plasma in equilibrium [9].
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Figure 13. Magnetically confined toroidal plasmas require a vertical magnetic field for
equilibrium. (a) Poloidal field lines are bunched together along the inner edge of the torus and
spaced apart along the outer edge, creating a net outward difference in magnetic pressure, the hoop
force. (b) A torus has more surface area directed away from the central axis than toward it, so the
same plasma pressure acting on those surfaces produces a net outward force, the tire tube force.
(c) Utilizing a vertical magnetic field Bz and a toroidal plasma current Jt creates an inward Jt×Bz
force that balances the outward hoop and tire tube forces and holds the plasma in equilibrium.

The time variation of a magnetic field in a plasma may be found from Faraday’s law. A simple
form of Ohm’s law, E = ηj (valid for v = 0) may be used to rewrite Faraday’s law:

∂B

∂t
= −∇×E = −∇×ηj

= −∇×η
(∇×B

µo

)
using Eq. (136)

=
η

µo
∇2B = Dmag∇2B Dmag ≡

η

µo
(143)

Equation (143) used Gauss’s law, ∇ ·B = 0, in evaluating ∇×(∇×B). Note that the final result
takes the form of a diffusion equation. Magnetic field lines diffuse through a plasma with a diffusion
constant Dmag. Because plasmas have very low electrical resistivities, Dmag is very small, and
magnetic field lines tend to be “frozen in place” within a plasma–they move with the plasma. For
example, the resistivity from Eq. (98) for typical fusion plasma values of Te = 20 keV and ln Λ = 20
is η = 7.2× 10−10 Ω-m. The time τ for a magnetic field line to diffuse a distance L is

τ =
L2

Dmag
=

µo
η
L2 = 1700 L2

meters sec . (144)

Diffusion across a typical plasma radius L = 0.1 m requires 17 seconds, much longer than the
expected ∼ 1 sec confinement time for a magnetic fusion plasma. To get the magnetic field lines
inside the plasma in the first place, they must be present before the fuel becomes ionized.

Plasmas that are held in place by magnetic fields can find several ingenious ways of wiggling out
of balance and dissipating their energy against the nearest material wall. In a cylindrical plasma
as shown in Fig. 8(a), instabilities may take the general form

Instability ∝ exp[i(mθ + kz)] . (145)

One may also apply Eq. (145) to a toroidal plasma (Fig. 9) by letting z become the distance
around the major circumference of the torus. A convenient way to classify MHD instabilities is by
their mode number m. The following sections present simple analyses of the m = 0, m = 1, and
m ≥ 2 instabilities. For more detailed analysis of MHD equilibrium and instabilities, see [4, 9].
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3.2 Sausage Instability

The m = 0 instability is a cylindrically symmetric mode called the sausage instability, since it
causes a cylindrical plasma to pinch off in places and look like a string of sausages, as shown in Fig.
14(a) and (b). To understand the physical mechanism of the sausage instability, one can consider
a cylindrical plasma with a sharp boundary at radius a and an axial current Iz flowing through it
as illustrated in Fig. 14(a). The axial current creates a magnetic field Bθ around the plasma as
shown in the figure. Using Ampère’s law, the magnetic field strength just outside the plasma is

Bθ =
µoIz
2πa

. (146)

The outside pressure exerted on the plasma by this magnetic field is

Poutside =
B2
θ

2µo
=

µoI
2
z

8π2a2
. (147)

As shown by Eq. (147), if the radius a begins to constrict at some point along the plasma, the
outside magnetic pressure will increase at that point. The increased pressure will cause the plasma
to constrict even more, as plasma particles simply move to nearby unconstricted regions without
offering much resistance. Thus the system is unstable to this sort of collapse.

This instability can be prevented by having a magnetic field Bz inside the plasma as shown in Fig.
15(a). Because magnetic field lines are trapped within the plasma, the axial magnetic flux πa2Bz
through the plasma remains constant regardless of changes in the plasma radius a. Therefore if the
field strength is Bzo when a = ao, the axial field strength Bz when a is allowed to vary is

Bz =

(
ao
a

)2

Bzo . (148)

Constricting the plasma will also constrict the Bz field lines, creating an internal magnetic pressure
that opposes the constriction:

Pinside =
B2
z

2µo
=

1

2µo

(
ao
a

)4

B2
zo . (149)

Using Eqs. (147) and (149), the net pressure Pinside − Poutside changes with variations da in the
plasma radius in the following way:

d(Pinside − Poutside)

da
= − 2B2

z −B2
θ

µoa
. (150)

For stability, a decrease in a should increase the pressure difference Pinside − Poutside, thereby
opposing a further decrease in the radius. Thus stability requires

d(Pinside − Poutside)

da
< 0 =⇒ Bθ

Bz
<
√

2
Requirement for preventing

sausage instability
(151)

This result is also valid for a toroidal plasma with the substitution Bθ → Bp and Bz → Bt.

During the sausage instability, the constricted radius moves inward very quickly (at roughly the ion
thermal velocity) with the strong Bθ field following along right behind it. This large time-varying
magnetic field at the constriction point can induce large electric fields there via Faraday’s law.
The large electric fields can accelerate ions to fusion energies; this was the cause of anomolous
fusion reactions in some early plasma confinement systems. (This mechanism is not of interest for
producing fusion energy, because much more energy is required to create the plasma, and then that
energy is lost when the plasma is disrupted by the sausage instability.)
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Figure 14. Sausage and kink instabilities. (a) A cylindrical column of plasma confined
by a purely angular magnetic field Bθ (created by an axial current Iz in the plasma) is prone to
instabilities. (b) In the sausage (m = 0) instability, a constriction in the plasma column increases
the external magnetic pressure, causing even further constriction until the plasma pinches in two.
(c) In the kink (m = 1) instability, a kink in the plasma column compresses Bθ on one side of the
kink and relaxes it on the other side, causing a lateral pressure difference that pushes the plasma
kink even further off axis until it hits the wall.
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Figure 15. Adding an axial magnetic field Bz inside the plasma prevents the sausage
and kink instabilities. (a) The pressure of Bz resists the pinching of the sausage instability,
and the tension of the Bz field lines resists the bending of the kink instability. (b) At the plasma
surface, the internal Bz and external Bθ add together to form a spiral magnetic field. (c) The
cylindrical plasma surface may be “unrolled” to better visualize the spiral field. If the slope Bθ/Bz
of the spiral magnetic field equals or exceeds the slope 2πa/L of the diagonal of the unrolled surface,
the magnetic field will make at least one complete spiral over the length of the plasma and the kink
instability can develop.

The phenomenon of a plasma current creating a magnetic field that helps confine or compress
the plasma is called the pinch effect [9]. Z pinches like the above example use an axial plasma
current Iz to create an angular field Bθ around the plasma, while theta pinches use an angular
plasma current Iθ to produce an axial magnetic field. Screw or zeta pinches have plasma currents
and magnetic fields with both axial and angular components. Magnetic fusion approaches such as
tokamaks, reversed field pinches, and field reversed configurations use pinch-created magnetic fields
in conjunction with magnetic fields created by external coils, as will be shown in Section 7.2.
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3.3 Kink Instability

By definition, the m = 1 instability is an asymmetric mode that makes one complete cycle each
time it spirals around a cylindrical plasma, as shown in Fig. 14(c). Because the cylindrical plasma
is kinked to one side, this is called the kink instability. The physical mechanism of the instability
is that if a kink in the plasma begins to form, the external Bθ lines will be compressed on one
side of the kink and expanded on the other. This causes a difference in magnetic pressure across
the kink (similar to the hoop force) which makes the instability grow worse. As with the sausage
instability, adding internal axial field lines Bz will prevent the kink instability [Fig. 15(a)]. A kink
would stretch the Bz lines; their tension strongly resists such stretching and thus stabilizes the
plasma if Bz is strong enough.

The required strength of Bz may be found by considering a cylindrical plasma of length L and
radius a with a sharp boundary. At the surface of the plasma, the internal Bz field and external
Bθ field add together to create spiral magnetic field lines, as shown in Figure 15(b). If these lines
complete at least one circle of the plasma over the entire length L, the kink instability can make
one complete cycle and hence is permitted to develop.

The situation may be visualized more easily by “unrolling” the external surface of the cylindrical
plasma as in Fig. 15(c) to form a rectangle of height 2πa and length L. The angular and axial
magnetic fields add together to form field lines with slope Bθ/Bz. One complete spiral over the
length of the cylinder corresponds to the diagonal of the rectangle, which has slope 2πa/L. There-
fore the stability requirement that the magnetic field lines not make a complete spiral means that
the slope of the field lines should be less than the slope of the diagonal of the cylinder:

Bθ
Bz

<
2πa

L

Kruskal-Shafranov condition to prevent
kink instability in cylindrical plasma

(152)

Using Eq. (146) to express Bθ in terms of the axial plasma current Iz that creates it, stability
against the kink mode in a cylindrical plasma requires that the current be limited to

Iz <
Bz
µo

(2πa)2

L

Current limit to prevent
kink instability in cylindrical plasma

(153)

These results can be adapted to a toroidal plasma with major radius R and minor radius a using
the substitutions Bθ → Bp, Bz → Bt, L→ 2πR, and Iz → It:

Bθ
Bz

<
a

R
or It <

Bt
µo

2πa2

R

Kruskal-Shafranov condition to prevent
kink instability in toroidal plasma

(154)

Equation (154) means that for stability, the safety factor from Eq. (105) (this is why it is called
the safety factor) must be

qs ≡
a

R

Bt
Bp

> 1
Safety factor to prevent

kink instability
(155)

The diameter of cylindrical plasmas is typically much less than their length, 2a/L ≤ 1/3, and a
similar relationship is generally true for toroidal plasmas, a/R ≤ 1/3. Thus the stability conditions
in Eqs. (152) and (154) are almost always more stringent than the condition (151) to prevent
the sausage instability. A plasma that satisfies the Kruskal-Shafranov condition is generally stable
against both m = 0 and m = 1 instabilities. One should also avoid rational values of the safety
factor, qs = M/N where M and N are integers. For rational values, the field lines close on
themselves after a certain number of trips around the torus, allowing instabilities to complete a
cycle and grow.
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If the plasma is very narrow and long, the axial Bz may not provide sufficient stability against
kink modes. A kink with a wavelength much longer than the plasma radius r could deviate from
the axis by an amount comparable to r without stretching the Bz lines enough to provide an
adequate restoring force. Surrounding the plasma with an electrically conducting wall can stabilize
such long-wavelength kink modes. A kink would compress the external magnetic field between the
plasma kink and the wall, leading to an increased magnetic pressure that counteracts the kink.

Another stabilizing influence is magnetic shear, or a magnetic field whose direction varies with the
radial position inside the plasma. The local magnetic field may provide a perfect environment for
an instability to develop, but as the instability grows and reaches a larger radius, it will find a
different magnetic field that inhibits its further growth.

3.4 Rayleigh-Taylor and Flute Instabilities

The Rayleigh-Taylor instability occurs when a heavy (high density) fluid is above a light (low
density) fluid and both fluids are subject to a downward gravitational force or similar force due to
acceleration, as shown in Fig. 16(a). A ripple at the boundary will grow larger and larger [Fig.
16(b)], letting some of the light fluid rise and some of the heavy fluid sink. Eventually, all of the
heavy fluid will be below the light fluid.

As will be shown in Section 6, the Rayleigh-Taylor instability occurs in inertial confinement fusion.
However, there is a similar instability in magnetically confined plasmas. MHD instability modes
with m ≥ 2 are called flute instabilities, because they make a cylindrical plasma look like a
fluted column [Fig. 16(c)]. As will be explained shortly, the plasma acts like the heavy fluid and
the external magnetic field acts like the light fluid, leading to instabilities at the plasma surface.

First the Rayleigh-Taylor instability will be analyzed. The instability grows exponentially with
a growth rate γ that can be calculated using a simplified version of an original derivation by
Chandrasekhar. Consider the situation in Fig. 16(a) where a heavy fluid of density ρ1 occupies
the space z > 0 and a light fluid of density ρ2 fills the space z < 0. A downward gravitational
acceleration g acts on both fluids, and the fluids are initially motionless.

A wavelike perturbation at the boundary between the fluids will perturb the local density and
pressure by the amounts δρ and δp respectively. The perturbation will also introduce a nonzero
velocity v. The perturbation and its associated quantities will vary like

δρ , δp , and v ∝ exp(ikx+ γt) (156)

The MHD equations may be applied to this perturbation and simplified to first order in the per-
turbation. The x and z components of Eq. (129) become

ργvx = −ikδp (157)

ργvz = − d

dz
(δp)− δρg (158)

Likewise, Eq. (136) reduces to

ikvx +
dvz
dz

= 0 (159)

Using Eq. (136) for an incompressible plasma, Eq. (131) becomes

γ δρ+ vz
dρ

dz
= 0 (160)
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Figure 16. The Rayleigh-Taylor and flute instabilities. (a) A light fluid supporting a heavy
fluid under gravitational or other acceleration is prone to the Rayleigh-Taylor instability. (b) A
ripple at the boundary between the fluids grows larger and larger, allowing some of the heavy fluid
to sink and some of the light fluid to rise, until all the heavy fluid is below the light fluid. (c) The
flute (m ≥ 2) instability in a plasma column is very similar, with the plasma as the heavy fluid and
the external magnetic field as the light fluid. The centrifugal force of particles circling around the
column plays the role of gravity. The resulting ripples at the surface make the plasma look like a
fluted column.

Multiplying Eq. (157) by ik and using Eq. (159), one obtains

k2δp = ργ ikvx = −ργ dvz
dz

(161)

Combining Eqs. (158) and (160), one finds

d

dz
δρ = −ργvz +

g

γ

dρ

dz
vz (162)

Choosing either side of the boundary (dρ/dz = 0) and eliminating δp between Eqs. (161-162) yields(
d2

dz2
− k2

)
vz = 0 =⇒ vz = vzoe

−|k|z on both sides of boundary (163)

Thus vz is maximum (vzo) at the boundary and decreases exponentially with distance from the
boundary, with a decay length comparable to the perturbation wavelength at the boundary (∼ 1/k).

It is convenient to define the difference in a quantity across the boundary:

∆o(f) ≡ f(z = 0+)− f(z = 0−) (164)

Applying ∆o to both sides of Eq. (161) produces

k2∆o(δp) = −γ∆o

(
ρ
dvz
dz

)
(165)

Similarly, applying ∆o to Eq. (162) gives

∆o(δp) =
g

γ
vzo∆o(ρ) (166)
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The instability growth rate γ may be found by combining Eqs. (165) and (166) to eliminate ∆o(δp):

∆o

(
ρ
dvz
dz

)
=

k2

γ2
gvzo∆o(ρ)

=⇒ γ =

√
gk

(
ρ1 − ρ2

ρ1 + ρ2

)
(167)

=
√
gk for ρ1 � ρ2 (168)

Although this derivation used the assumption of incompressible fluids for simplicity, Eqs. (167)
and (168) also apply to compressible fluids.

The flute instability in a cylindrical plasma column is very similar to the Rayleigh-Taylor insta-
bility. In this case, the plasma and the magnetic field play the roles of the heavy and light fluids,
respectively. The centrifugal force of plasma particles circling around the plasma column takes the
place of gravity. Ripples develop at the plasma surface (just as they develop at the fluid boundary
in the Rayleigh-Taylor instability), making the plasma look like a fluted column. The mode number
m determines the number of bulges around the plasma column.

Because the flute instability is driven by the centrifugal force of plasma particles following curved
magnetic field lines, it can be prevented with the proper curvature of the field lines. Lines that
curve outward, like the Bθ lines surrounding the column in Fig. 16(c), generate centrifugal force
that pulls the plasma outward into the “light fluid” of the magnetic field and leads to instability. In
contrast, magnetic field lines that curve inward generate centrifugal force that pulls particles into
the plasma, ensuring stability. Therefore, the magnetic confinement geometry should preferably
have lines that curve inward (at least most of the time as seen by typical plasma particles). If lines
must curve outward, the plasma can be at least partially stabilized by any factors that tend to
blur the sharp boundary between the heavy plasma and light magnetic field fluids, such as a large
cyclotron radius of the particle orbits about the magnetic field lines.
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4 Waves in Plasmas
Although there is a whole zoo of waves that can occur in plasmas [1, 4], they may be separated
into different cages based on whether they are electrostatic or electromagnetic, primarily involve
electrons or ions, and propagate parallel, perpendicular to, or in the absence of a background
magnetic field B0. In each case, it is important to find the dispersion relation between the
wave’s angular frequency ω and its wavevector k.

4.1 Electrostatic Electron Waves

Electrostatic waves have an oscillating electric field but no oscillating magnetic field. Electrostatic
electron waves, shown in Fig. 17(a), involve alternating compression and rarifaction of the electron
density as the electrons oscillate longitudinally along k, the direction the wave travels. At the high
frequencies typical of these waves, inertia prevents the ions from moving much. Thus ions may be
regarded as a fixed background of constant-density positive charge. There is excess negative charge
in regions of electron compression and excess positive charge in regions of electron rarifaction.

B (a) (b) (c) 
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ωpe 

k k 

Slope = vg 
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Figure 17. Electrostatic electron waves. (a) The electron density is alternately compressed
and rarified, while the ion density remains approximately constant. (b) The dispersion relation
for waves without (or parallel to) an applied magnetic field has a minimum frequency ωpe and
asymptotically approaches a slope

√
3 vte at high frequencies. In any dispersion relation, for a wave

of a given k (such as the point shown), the phase velocity vp of the wave is the slope ω/k from
the origin to that point and the group velocity vg is the instantaneous slope dω/dk at that point.
(c) For waves perpendicular to an applied magnetic field, cyclotron motion acts as an additional
restoring force for displaced electrons.

B0 = 0

The simplest case to analyze is one in which there is no externally applied magnetic field B0.
Equations involving the electron density n, velocity v, pressure p, and electric field E may be
linearized by treating the waves as small perturbations of a homogeneous background. A subscript
0 denotes a homogeneous equilibrium value, and subscript 1 denotes a small added perturbation:

n = n0 + n1 p = p0 + p1 v = v1 (v0 = 0) E = E1 (E0 = 0) (169)

The perturbations are assumed to vary in a typical wave fashion:

n1, v1, p1, and E1 ∝ exp[i(k · x− ωt)] . (170)

Linearizing the continuity eq. (7) by substituting the expressions from Eq. (169) and keeping only
terms that are first-order in the perturbed quantities, one finds

∂n1

∂t
+ n0∇ · v1 = 0 =⇒ ∂2n1

∂t2
= − n0∇·

∂v1

dt
. (171)

Similarly, the linearized Poisson equation is

∇ ·E1 =
−en1

εo
. (172)
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The linearized adiabatic condition from Eq. (10) is

∇p1 = γ
p0

n0
∇n1 . (173)

Now we have enough tools to linearize the momentum eq. (8) and show that it becomes a wave
equation for the perturbation:

mn0
∂v1

∂t
= −en0E1 − ∇p1

= −en0E1 − γ
p0

n0
∇n1 [using Eq. (173)]

mn0∇·
∂v1

∂t
= −en0∇ ·E1 − γ

p0

n0
∇2n1 [taking ∇· both sides]

−m∂2n1

∂t2
=

e2n0

εo
n1 − γ

p0

n0
∇2n1 [using Eqs. (171) and (172)] (174)

ω2 = ω2
pe + 3v2

tek
2 [using Eq. (170) and p0 = n0kBTe] (175)

Because the waves adiabatically compress the electrons in one dimension, γ = 3 has been used. The
first term on the right side of Eq. (175) derives from the electric field E1 and is simply the plasma
oscillation restoring force discussed in Section 1.2. The second term represents the restoring force
due to the pressure difference between compressed and rarified regions of the wave.

The dispersion relation from Eq. (175) is plotted in Fig. 17(b). For a wave with a particular
wavevector k and frequency ω, such as the point indicated in Fig. 17(b), the phase velocity
vp ≡ ω/k of the wave is simply the slope of the line between the origin and that point. The group
velocity vg ≡ dω/dk of the wave is the instantaneous slope of the dispersion curve at that point.
One may regard the group velocity as how fast a wave actually moves through a plasma; the phase
velocity is simply how fast phase ripples appear to be moving within the wave.

Figure 17(b) shows that waves with ω < ωpe do not propagate (electron Debye shielding screens
them out), while electrostatic waves at high frequency asymptotically approach a velocity

√
3vte.

B0 6= 0 and k ‖ B0

For electrostatic waves moving along a magnetic field B0, v1 ‖ k ‖ B0, the magnetic field exerts
no force, v1 ×B0 = 0. Thus the equations derived for B0 = 0 still apply.

B0 6= 0 and k ⊥ B0

Electrostatic electron waves moving perpendicular to B0 ≡ B0ẑ are similar to the plasma oscilla-
tions discussed in Section 1.2, but with an added v ×B0 restoring force. The magnetic field turns
the simple oscillatory electron motion in the x direction into a cyclotron orbit in the x − y plane
[Fig. 17(c)]. Identifying the oscillation amplitude x with the cyclotron radius rce, the electron’s
velocity in the y direction is vy = ωcex. This creates a magnetic restoring force in the x direction:

Fx = −evyB0 = −eB0ωcex (176)

Adding this restoring force in Eqs. (20) and (21) yields the electron equation of motion

d2x

dt2
+ (ω2

pe + ω2
ce)x = 0 , or

ω2 = ω2
pe + ω2

ce ≡ ω2
uh , (177)

in which ωuh is called the upper hybrid frequency.

Waves at an arbitrary angle are generally a scary combination of the k ‖ B0 and k ⊥ B0 modes.
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4.2 Electrostatic Ion Waves

Electrostatic ion waves occur at low enough frequencies that the ions can oscillate. Their charge
drags the nimble electrons along with them, so that these waves involve alternating compression
and rarifaction of both the ion and electron densities [Fig. 18(a)].
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Figure 18. Electrostatic ion waves. (a) Ions and electrons move together as they are alter-
nately compressed and rarified. (b) The dispersion relation has a velocity vs at low frequencies
and asymptotically approaches the ion plasma frequency ωpi. (c) Electrons make tighter spirals
than ions around magnetic field lines. When k is almost perpendicular to B, the ions are free to
oscillate parallel to k, while the electrons must oscillate parallel to B as shown to follow the ions.
When k is exactly parallel to B, the electrons can no longer move between ion wavefronts in this
fashion. Charge neutralization then constrains the ions to oscillate only the short distance that the
electrons can perpendicular to B.

B0 = 0

For electrostatic ion waves, Eq. (174) may be applied to ions by setting m = mi and n0 = ni. The
term arising from E1 may be neglected, since the electrons move to cancel out the ions’ electric
field. Pressure terms from both ions and electrons should be included, because both particle species
are compressed. The result of these modifications is

∂2n1

∂t2
=

γipi + γepe
nimi

∇2n1 =
γikBTi + ZγekBTe

mi
∇2n1 (ne = Zni) or

ω2 =
γikBTi + ZγekBTe

mi
k2 ≡ v2

sk
2 , where (178)

vs =

√
γikBTi + ZγekBTe

mi
Speed of sound in plasma (179)

= 6.18× 105
√
mp

mi

√
TkeV

m

sec
for T ≡ Ti = Te and Z = 1 (180)

vs is called the speed of sound by analogy with sound waves in conventional fluids. The ions are
adiabatically compressed in one dimension, so γi = 3 is used in Eq. (180). The isothermal value
γe = 1 is used for electrons since they are much faster and have time to equalize their temperature.
For typical fusion values of mi ∼ 2mp and T = 20 keV, the sound speed is vs ∼ 2× 106 m/sec.

The dispersion relation is linear at small k (long wavelengths) but asymptotically approaches the
ion plasma frequency ωpi at large k (short wavelengths), because the ions do not like to oscillate
faster than ωpi. This is illustrated in Fig. 18(b).

B0 6= 0 and k ‖ B0

As with electrostatic electron waves, a magnetic field exerts no force on electrostatic ion waves
propagating parallel to the field, so the equations for the B0 = 0 case may still be used.
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Figure 19. Anisotropic particle velocity distributions tend to cause instabilities that
generate waves. (a) Two opposing streams of particles are prone to the counterstreaming insta-
bility, compressing the particles in regions and generating electrostatic waves. (b) Electrons (or
ions) moving primarily in one dimension (say vertically) can trigger the Weibel instability. If a small
perturbing wavelike magnetic field arises, it will bend the electrons trajectories so that downward-
and upward-moving electrons separate into different “traffic lanes.” These electric currents make
the perturbing magnetic field grow. The currents dance around, so the magnetic field is actually
part of a full-fledged electromagnetic wave. Such instabilities can be prevented by minimizing
anisotropy in particle velocity distributions.

B0 6= 0 and k almost ⊥ B0

The v ×Bo magnetic restoring force added a term ω2
ce to the dispersion relation for electrostatic

electron waves propagating perpendicular to B0. For the same reasons, an electrostatic ion wave
traveling almost perpendicular to B0 should have a term ω2

ci added to Eq. (178):

ω2 = ω2
ci + v2

sk
2 . (181)

The qualification that k is almost perpendicular to B0 requires explanation. Because electrons
have a much smaller cyclotron radius than ions, it is much more difficult for them to oscillate
perpendicular to magnetic field lines. In this case, the ions oscillate along k as they are alternately
compressed and rarified as usual. However, the magnetic field prevents the electrons from oscillating
much in that direction, so they must travel back and forth along the field lines to neutralize the
ion charge in each wavefront [Fig. 18(c)]. Electrons are much faster than ions, vte � vti, and thus
are fast enough to travel the longer distances required to do this.

B0 6= 0 and k exactly ⊥ B0

When k is exactly perpendicular to B0, electrons can no longer travel between ion wavefronts
by moving along the field lines. Buildup of unneutralized space charge prevents the ions from
oscillating perpendicular to B0 more than the electrons can, and the electrons can only move as
much as cyclotron motion allows. Expressing this constraint as vi1 = ve1 = ωcex, one finds

mi
d2x

dt2
= ZeviyBo = ωceZeBox , or

ω2 = ωceωci ≡ ω2
lh ωlh = lower hybrid frequency (182)

Counterstreaming instability

When two opposing particle beams intersect (or equivalently, when a beam passes through a sta-
tionary plasma), regions of the beams can be momentarily compressed, triggering ion or electron
electrostatic waves [Fig. 19(a)]. The beams give energy to the waves, which grow exponentially
from this counterstreaming instability until they disrupt the beams. Since strongly anisotropic par-
ticle velocity distributions are the root of this problem, the best solution is to have approximately
isotropic distributions whenever possible, especially when the particle density is high. Anisotropic
velocity distributions can also produce electromagnetic waves [Fig. 19(b) and Section 4.3].
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4.3 Electromagnetic Electron Waves

Electromagnetic waves have an oscillating magnetic field B1 as well as an oscillating electric field E1.
When they travel through a plasma, their electric field drags particles back and forth [Fig. 20(a)].
Usually the affected particles are electrons, since most electromagnetic waves have frequencies too
high for much ion motion. The electric current of these moving particles in turn modifies the waves.
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Figure 20. Electromagnetic electron waves. (a) When an electromagnetic wave travels
through a plasma, its oscillating electric field drags electrons back and forth. (b) The interaction
with electrons alters the usual dispersion relation of electromagnetic waves so that waves with
ω < ωpe cannot propagate. At high frequencies the electrons cannot move much and the wave
velocity approaches the usual c. (c) Electromagnetic waves with right- (R) or left-handed (L)
circular polarization can propagate along an applied magnetic field B0. Electrons spiral around
B0 in the same direction as R waves, and ions spiral in the same direction as L waves. (d) Plane-
polarized waves may be regarded as the sum of L and R waves. After traveling through a plasma at
their different velocities, the L and R waves have different relative phases, causing Faraday rotation
of their composite plane wave. (e) An electromagnetic X wave travels perpendicular to B0 with
its oscillating magnetic field parallel to B0. The waves oscillating electric field has both transverse
(E1y) and longitudinal (E1x) components, making an ellipse during each wave cycle. (f) X waves
with E1 rotating in the opposite direction as the electrons can propagate with frequencies ω > ω+.
Waves with E1 rotating in the same direction as the electrons must have frequencies ωuh > ω > ω−.

B0 = 0

In the simplest case there is no externally applied magnetic field B0. Newton’s second law for an
electron with velocity v1 oscillating in the electric field of an electromagnetic wave is

me
∂v1

∂t
= −eE1 (183)

The electric current density due to moving electrons is j1 = −enev1. Differentiating this with
respect to time and using Eqs. (183) and (22) yields
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∂j1
∂t

= −ene
∂v1

∂t
=

e2ne
me

E1 = εoω
2
peE1 (184)

Ampère’s law for the electromagnetic wave may be written as

1

µo
∇×B1 = εo

∂E1

∂t
+ j1 (185)

Differentiating Eq. (185) with respect to time, one finds

1

µo
∇×∂B1

∂t
= εo

∂2E1

∂t2
+

∂j1
∂t

= εo

(
∂2

∂t2
+ ω2

pe

)
E1 [using Eq. (184)] (186)

= ε
∂2E1

∂t2
ε ≡ εo

(
1−

ω2
pe

ω2

)
(187)

where Eq. (187) used the wave substitution ∂/∂t→ −iω.

Faraday’s law for the electromagnetic wave is

∂B1

∂t
= −∇×E1 (188)

Taking ∇× both sides of Eq. (188) and using ∇ ·E1 = 0 for transverse waves produces

∇×∂B1

∂t
= −∇×(∇×E1) = ∇2E1 −∇(∇ ·E1) = ∇2E1 (189)

Finally, combining Eqs. (186) and (189) and using µoεo = 1/c2, ∂/∂t→ −iω, and ∇ → ik gives(
∂2

∂t2
+ ω2

pe

)
E1 = c2∇2E1 =⇒ ω2 = ω2

pe + c2k2 (190)

This dispersion relation is plotted in Fig. 20(b). Like electrostatic electron waves, electromagnetic
waves with frequencies less than the cutoff frequency ωpe cannot propagate. At high frequencies
the electrons’ inertia prevents them from moving much, so the wave more closely resembles an
electromagnetic wave in the vacuum and its velocity approaches c. Note from Eq. (187) that the
permittivity of a plasma is less than that of the vacuum and is actually negative for ω < ωpe.

Electromagnetic waves with ω < ωpe simply reflect off a plasma, and this has many physical
implications. Radio waves with frequencies less than the ωpe of the ionosphere surrounding the
earth can be transmitted from the ground and bounced off the ionosphere to distant locations on
the earth. A spacecraft re-entering the earth’s atmosphere heats the air before it into a plasma
shockwave that blocks radio communication between the spacecraft and the ground. Ordinary
metals are reflective at optical frequencies because their free electrons act like a dense plasma.
Plasma density can be measured by determining the cutoff frequency or dispersion relation of
electromagnetic waves launched into the plasma.

B0 6= 0 and k ‖ B0

Electromagnetic waves traveling parallel to an applied magnetic field B0 are affected by electrons
spiraling around B0, so the natural modes to consider are right- (R) and left-handed (L) circularly
polarized waves. The electron positions r1 and wave fields E1 and B1 may be written using complex
notation, with an exponential sign that is positive for R waves and negative for L waves:

r1 ≡ x1 + iy1 = r1o exp[±i(kz − ωt)] (191)

E1 ≡ E1x + iE1y = E1o exp[±i(kz − ωt)] (192)

B1 ≡ B1x + iB1y = B1o exp[±i(kz − ωt)] (193)
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In this notation, Newton’s second law for the Lorentz force on electrons becomes

me
∂2r1

∂t2
= ieB0

∂r1

∂t
− eE1 =⇒ me

e
r1o =

E1o

ω2 ± ωωce
(194)

Likewise, Faraday’s law from Eq. (188) becomes

i
∂B1

∂t
=

∂E1

∂z
=⇒ B1o =

ik

ω
E1o (195)

With the same notation, Ampère’s law from Eq. (185) is

c2∂B1

∂z
= −∂E1

∂t
+ i

ene
εo

∂r1

∂t
=⇒ c2kB1o = iωE1o − iωω2

pe

me

e
r1o (196)

Substituting Eqs. (194) and (195) into Eq. (196) to express everything in terms of E1o, one finds

ω2 =
ω2
pe

1± ωce/ω
+ c2k2 + sign for L waves

− sign for R waves
(197)

For B0 → 0 (ωce → 0), Eq. (197) just reduces to Eq. (190). With or without B0, the ω2
pe term

arises from the oscillating electrons that interact with the wave. For waves traveling along a nonzero
B0, this term is modified because the electrons also orbit around B0 at the cyclotron frequency ωce.
R waves rotate the same way as the electrons, and L waves rotate the other way, as shown in Fig.
20(c). Note that Eq. (197) blows up for R waves with ω = ωce since the wave’s electric field rotates
in the same direction and at the same frequency as the electrons, continually transferring energy
from the wave to the electrons. If ions had been included in the analysis, one would similarly have
found that L waves with ω = ωci resonate with ions (which orbit in the opposite direction from
electrons), continually giving wave energy to the ions. This phenomenon is called electron or ion
cyclotron resonance heating and is used to selectively heat electrons or ions in plasmas.

A plane-polarized electromagnetic wave may be regarded as a superposition of L and R waves,
as depicted in Fig. 20(d). Due to their different dispersion relations, L and R waves of a given
frequency have different velocities. Therefore L and R waves will have different relative phases after
propagating through a plasma, and hence their sum will be a wave whose plane of polarization has
rotated. This is called Faraday rotation; see the optics summary for more information.

B0 6= 0, k ⊥ B0, and E1 ‖ B0

By adding a vertical applied field B0 to Fig. 20(a), one can picture electromagnetic waves traveling
perpendicular to B0 with E1 parallel to B0. Because electrons sloshing up and down in the vertical
E1 electric field experience no v ×B0 force from the vertical B0 magnetic field, B0 does not affect
the waves. The waves in this situation are called ordinary or O waves, since their dispersion
relation is the same as Eq. (190) for electromagnetic waves with no B0.

B0 6= 0, k ⊥ B0, and E1 ⊥ B0

In contrast to O waves, electromagnetic waves traveling perpendicular to B0 but with E1 perpen-
dicular to B0 are modified by the applied magnetic field; they are called extraordinary or X
waves. As illustrated in Fig. 20(e), B0 may be defined as pointing in the z direction and k in the x
direction. The transverse electric field of the wave will then point in the y direction, E1y. As usual,
this electric field makes electrons move back and forth. However, the perpendicular magnetic field
converts this oscillatory electron motion in the y direction into cyclotron orbits in the x− y plane.
The electron motion in the x direction creates a second electric field component E1x associated
with the wave. Thus X waves have both a tranverse electric field E1y (like other electromagnetic
waves) and a longitudinal electric field E1x (more like electrostatic waves). Because X waves also
have an oscillating magnetic field B1, they are still classified among the electromagnetic waves.
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With the usual wave substitution ∂/∂t→ −iω, Newton’s second law from Eq. (1) may be rewritten:

−imeωv1x = −e(E1x + v1yB0) − imeωv1y = −e(E1y − v1xB0) (198)

Solving Eqs. (198) for v1x and v1y, one finds

v1x =
e

meω

(
−iE1x −

ωce
ω
E1y

)(
1− ω2

ce

ω2

)−1

v1y =
e

meω

(
−iE1y +

ωce
ω
E1x

)(
1− ω2

ce

ω2

)−1

(199)

Using j1 = −enev1 and wave substitutions ∂/∂t→ −iω and ∇ → ik, Eq. (186) may be written as
ω

µo
k×B1 = −εoω2E1 − iωj1 = −εoω2E1 + ieneωv1 (200)

Keeping the longitudinal term ∇ ·E1 = ikE1x, Eq. (189) may be expressed as

ωk×B1 = −k2E1 + kkE1x (201)

Combining Eqs. (200) and (201) produces

c2(−k2E1 + kkE1x) = ω2E1 + i
ene
εo
ωv1 (202)

Using Eq. (199), ωpe ≡ nee2/meεo, and ωce ≡ eB0/me, the x and y components of Eq. (202) are

i
ω2
peωce

ω
E1x =

[
(ω2 − c2k2)

(
1− ω2

ce

ω2

)
− ω2

pe

]
E1y (203)

−i
ω2
peωce

ω
E1y =

[
ω2

(
1− ω2

ce

ω2

)
− ω2

pe

]
E1x (204)

After combining Eqs. (203) and (204) to write everything in terms of E1x, some algebra yields

ω2 = c2k2 + ω2
pe

ω2 − ω2
pe

ω2 − ω2
uh

(205)

Because the oscillating E1x and E1y fields are 90o out of phase with each other, their sum E1 is field
that moves in an ellipse in the x− y plane [Fig. 20(e)]. It can move either in the same direction or
the opposite direction as the orbiting electrons, so the cutoff frequency at which X waves cease to
propagate [k = 0 in Eq. (205)] assumes different values for the two cases:

ω± ≡
1

2

(
±ωce +

√
ω2
ce + 4ω2

pe

)
(206)

Equation (205) blows up for ω = ωuh; at this frequency, E1 rotates in the same direction at the
same frequency as electrons in electrostatic upper hybrid oscillations (177), so the X wave’s energy
is efficiently absorbed and converted to such oscillations. X waves can only propagate for ω>ω+

and ωuh > ω > ω−, as shown in Fig. 20(f).

Weibel instability

Just as anisotropic particle velocity distributions can lead to electrostatic wave instabilities like the
counterstreaming instability, they can also cause electromagnetic wave instabilities. The Weibel
instability is a good example and is illustrated in Fig. 19(b). This phenomenon is triggered
by particles moving primarily in one dimension, such as the electrons moving vertically in the
figure. If a wavelike perturbing magnetic field arises, it will produce v ×B forces that bend the
particle trajectories, separating them into separate “traffic lanes” of particles moving up versus
down. These traffic lanes are net electric currents that reinforce the perturbing magnetic field. The
currents tend to dance around, so the magnetic field is actually part of an electromagnetic wave.
As with the counterstreaming instability, the wave feeds off the anisotropy and grows exponentially
until it disrupts the velocity distributions. The simplest way to avoid such instabilities is to avoid
highly anisotropic velocity distributions, especially when the plasma is very dense.
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4.4 Electromagnetic Ion Waves

B0 = 0

The very nature of electromagnetic ion waves involves an applied magnetic field B0 [Fig. 21], as
will be shown by the following cases; they cannot propagate without such a field.

B1 

B0 

k 

k (a) (b) 
Figure 21. Electromagnetic ion waves. (a) Alvén waves, which propagate parallel to an
applied magnetic field B0, create transverse oscillations of the field lines. Particles (dots) stay with
the field lines, so the lines oscillate like strings having the magnetic field tension and the particle
mass density. (b) Magnetosonic waves, which propagate perpendicular to an applied field B0,
alternately compress and rarify both the particles (like electrostatic ion waves) and the field lines.

B0 6= 0 and k ‖ B0

Electromagnetic ion waves propagating along B0 are called Alvén waves. They have an oscillating
magnetic field B1 in the transverse direction, so the net field B0 + B1 looks like the B0 field lines
vibrating from side to side with the small perturbation B1 [Fig. 21(a)]. As explained in Section
3.1, the tension of magnetic field lines is B2

0/µo. Because the ions tend to follow the vibrating field
lines, they effectively impart their mass density mini to the lines. (The electron mass density is
negligible in comparison.) Therefore, the magnetic field lines may be treated as vibrating strings
with these values of tension and mass density. Borrowing the results for transverse waves on strings
from classical mechanics, the electromagnetic ion waves obey

ω2 =
Tension/cross sectional area

Mass/volume
k2 =

B2
0

µomini
k2 ≡ v2

A k
2 (207)

vA ≡ B0√
µomini

= 2.18× 1013 1
√
ni, cm−3

√
mp

mi
BT

m

sec
Alfvén wave velocity (208)

For typical magnetic fusion plasmas with ni ∼ 1014 cm−3 and B ∼ 10 T, vA ∼ 107 m/sec.

Bo 6= 0 and k ⊥ Bo

Whereas Alvén waves cause transverse vibrations of the B0 field lines, electromagnetic ion waves
propagating perpendicular to B0 cause compression and rarifaction of the field lines, as shown
in Fig. 21(b). The compression is opposed not only by the ion and electron pressures (as in
electrostatic ion waves) but also by the magnetic pressure pm = B2

0/2µo. Because of the similarity
to sound waves, these are called magnetosonic waves. Including the magnetic pressure in Eq.
(178) and assuming that the magnetic field is compressed in two dimensions (γm = 2), one finds

ω2 =
γipi + γepe + γmpm

nimi
k2 =

(
γikBTi + ZγekBTe

mi
+

B2
0

µonimi

)
k2 = (v2

s + v2
A)k2 , or

v =
√
v2
s + v2

A Magnetosonic wave velocity (209)
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5 Stellar Fusion
Stars are natural fusion reactors and exhibit a wide range of plasma physics phenomena, so they
are worth analyzing in some detail. By considering the basic physics of hydrostatic equilibrium and
energy transport, we will calculate the temperature, pressure, luminosity, and other properties of
stars. The fusion reactions that can occur in stars will then be considered in light of these physical
conditions. Moreover, processes attending the births and deaths of stars will be discussed. Finally,
all of these calculations will be compared with observed data for stars.

5.1 Hydrostatic Equilibrium

The temperatures, pressures, and other properties of stars may be calculated simply by considering
hydrostatic equilibrium, the balance of inward and outward forces within stars. A good place to
begin is to find the mean mass density ρ; for a spherical star of mass M and radius R, this is just

ρ =
3M

4πR3
. (210)

Using observed values for the sun’s mass M� = 1.989× 1030 kg and radius R� = 6.96× 108 m, one
finds a mean solar density of ρ� = 1.41 g/cm3. This is 1.41 times the density of water and 20 times
the density of cryogenic uncompressed liquid hydrogen. The peak density in the center of the sun
is approximately 70 times higher than this mean density, as will be calculated shortly.

If almost all of the matter in the star is protons and electrons, the proton density np may be found
from the stellar mass density and the atomic mass mH of hydrogen. (Stars usually contain quite a
bit of helium, but the pure-hydrogen assumption is fine for now.)

np ≈ ρ/mH . (211)

Using ρ� for the sun, the mean proton density is np ≈ 8.5× 1023 cm−3. The electron density is

ne ≈ np (neglecting ions other than protons) (212)

If a star is neither collapsing nor expanding, the inward and outward forces within it must balance.
Consider a thin shell of radius r and thickness dr within the star, as shown in Fig. 22(a). Gravita-
tional attraction between the matter in the shell and all the matter deeper inside the star creates
an inward force per area on the shell of Gρ(r)m(r)dr/r2, where G ≈ 6.67 × 10−11 m3kg−1sec−2

is Newton’s gravitational constant, ρ(r) is the density of the shell, and m(r) is the stellar mass
inside the radius r. This causes the pressure to increase as one goes further into the star, and this
pressure difference between the inside and outside of the shell creates a net outward force per area
of −(dp/dr)dr. Balancing these outward and inward forces yields the equation,

−dp
dr

=
Gρ(r)m(r)

r2
Hydrostatic equilibrium (213)

where m(r) =

∫ r

0
ρ(r′) 4πr′2dr′ (214)

Equations (213) and (214) are coupled together, and the situation is further complicated by the
dependence of ρ(r) on the pressure and temperature, both of which are functions of the radius.
One can only solve these coupled equations numerically, yet it is possible to make rough estimates
using the simple stellar model in Fig. 22(b). The left side of Eq. (213) may be used to estimate
the drop between the central pressure pc and surface pressure ps occuring over the full radius R,
using quantities on the right side of Eq. (213) that are roughly intermediate between the surface
and center values, ρ(r) ≈ ρ, m(r) ≈M/2, and r ≈ R/2:
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Figure 22. Hydrostatic equilibrium and stellar structure. (a) Consider a thin shell of radius
r and thickness dr within a star. For the star to be in equilibrium, the inward gravitational and
outward pressure forces on the shell must balance each other. (b) Most of the fusion reactions occur
in a small core region with very high central values of the density ρc, pressure pc, and temperature
Tc. The surface has essentially zero density and pressure and a relatively low temperature Ts.

pc − ps
R

≈ Gρ (M/2)

(R/2)2
=⇒ pc ≈

2GρM

R
since ps ≈ 0 (215)

≈ 3

2π

GM2

R4
using Eq. (210) (216)

With the values M� and R� for the sun, Eq. (216) gives pc ≈ 5×1014 Pa. More precise calculations
[10, 11] give central pressures of pc ≈ 2.7× 1016 Pa = 2.7× 1011 bar, where 1 bar is approximately
the atmospheric pressure at sea level on earth (1 atmosphere = 1.013 bar = 1.013× 105 Pa).

Using the ideal gas law and Eqs. (211)-(212), the pressure due to both protons and electrons is

p = (np + ne) kB T ≈ 2< ρ T , (217)

where the molar gas constant is < ≡ kB/mH ≈ 8.315 J/(oK·mol). In modeling stars, an equation of
state is needed to relate the local pressure, density, and temperature to each other. While the ideal
gas law was used here for this purpose, other equations of state are sometimes more appropriate–for
example, the Fermi equation for degenerate electrons in very dense stars.

The stellar temperature may be estimated by applying Eq. (217) to a point intermediate between
the star’s center and surface and using typical intermediate values for the quantities, p ≈ pc/2,
ρ ≈ ρ, and T ≈ (Tc − Ts)/2, where Tc and Ts are the temperatures at the center and surface:

pc
2
≈ 2 ρ< Tc − Ts

2
=⇒ Tc ≈

pc
2< ρ

since Tc � Ts

≈ GM

<R
using Eq. (215) (218)
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Using M� and R�, Eq. (218) gives Tc ≈ 2.3× 107 oK for the sun. This is quite close to the result
of numerical calculations, Tc ≈ 1.6× 107 oK = 1.4 keV. Note that this temperature is surprisingly
low compared to the optimum temperatures for fusion reactions that were discussed in Section 1.5.
Therefore, fusion reactions in stars proceed at a comparatively slow rate, as will be discussed.

Equation (217) may be employed to find the central density. Using pc ≈ 2.7 × 1016 Pa and
Tc ≈ 1.6×107 oK for the sun, one finds a central mass density of ρc ≈ 100 g/cm3, or central proton
and electron densities of np, c ≈ ne, c ≈ 6× 1025 cm−3.

The preceding calculations included the pressure from ions and electrons but not the pressure from
photons. A star is filled with thermal radiation that is in equilibrium with the local temperature
of matter in each region of the star. From statistical physics, the pressure of this radiation is

prad =
4

3

σSB

c
T 4 , (219)

where σSB ≈ 5.67× 10−8 W/(m2 oK4) is the Stefan-Boltzmann constant. Using Tc ≈ 1.6× 107 oK
for the sun, this radiation pressure is prad ≈ 1.7×1013 Pa = 1.7×108 bar, so it was okay to neglect
the radiation pressure compared to the particle pressure. Nonetheless, the radiation pressure can
become significant for stars with higher temperatures and/or lower densities than the sun.

As shown in the general relativity summary, the mass of a star is sufficient to warp space and
time to a measurable degree. These general relativistic effects are smaller than the classical effects
considered above by a factor of ∼ (GM)/(c2R). For the sun, this factor is ∼ 2 × 10−6, so general
relativity may be ignored in simple models of the sun and other similar stars. However, general
relativity can become quite important in the final collapse of large stars that have M/R�M�/R�.

5.2 Energy Transport

Energy generated by fusion reactions in the center of a star can be transported to the star’s surface
by radiation, conduction, or convection. As will be shown, radiative energy transport is generally
most important.

Radiative Energy Transport

Photons carry energy from the center of a star to its surface, as illustrated in Fig. 23(a). Scattering
of the photons off electrons and ions during the journey from the center to the surface determines
the rate of energy transport. Photon-electron scattering is called Thomson scattering, and its cross
section depends on the “classical electron radius” re ≡ e2/(4πεomec

2) ≈ 2.828×10−15 m. Since the
electron is a point particle, this quantity is not actually the electron’s radius, but rather a measure
of the “effective reach” of its electric field in events like Thomson scattering. As derived in the
relativistic quantum field theory summary, the Thomson cross section is

σ
Thomson

=
8π

3
r2
e = 6.653× 10−29 m2 . (220)

The mean free path of a photon before it is scattered by Thomson scattering is

(lmfp)Thomson
=

1

ne σThomson

(221)

Using the mean density calculated earlier, ne ≈ 8.5×1029 m−3, one finds (lmfp)Thomson
≈ 1.8×10−2

m. More detailed calculations [10, 11] show that scattering from ions tends to shorten the mean
free path to lmfp ≈ 2× 10−3 m. Of course, these results are highly dependent on the local density,
and the ion scattering effect is also strongly dependent on the temperature. Thus this mean free
path length for photons should only be regarded as a crude estimate.
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Figure 23. Energy transport in a star. (a) Radiative energy transport. Fusion energy
produced in a stars core is transported to the surface in the form of photons. During transit, the
photons repeatedly scatter off electrons and ions. An example random walk for a stellar photon
is shown above. Because the mean free path between a photons scatterings is much shorter than
the stars radius, photon transport may be modeled as a diffusional process. (b) Convective energy
transport. A certain volume of plasma may rise to a higher altitude within a star, taking its thermal
energy with it. Since pressure decreases with altitude, the volume will expand and its density will
decrease. If the new density inside the volume is greater than the local outside density, the volume
will sink to its original location and such convective energy transport will not occur.

Because the mean free path before a photon is scattered is many orders of magnitude smaller than
a star’s radius, transport of photons from a star’s center to its surface may be treated as a diffusion
process. As discussed in Section 2.3, the diffusion constant for particles of velocity v and mean free
path lmfp is D = v lmfp/3. Therefore, the diffusion constant for photons in a star is

Drad =
1

3
c lmfp . (222)

In diffusion problems, the time τ for particles to diffuse a distance L from their sources is τ = L2/D.
Thus the typical time τphoton escape for a photon to travel from a star’s center to its surface is

τphoton escape =
3R2

c lmfp
. (223)

For lmfp ≈ 2 × 10−3 m, this time is τphoton escape ≈ 2.4 × 1012 sec = 72, 000 years. The photons
emanating from the sun’s surface today were originally created tens of thousands of years ago!

The energy transported by the diffusion of the photons may also be calculated. From Statistical
Physics ?.?, the radiation energy density of thermal photons is

Urad = 4
σSB

c
T 4 . (224)
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The local radiation energy density depends on the radial location within the star,

dUrad

dr
=

dUrad

dT

dT

dr
= 16

σSB

c
T 3 dT

dr
. (225)

Radiative energy diffuses down the gradient found in Eq. (225) with the diffusion constant Drad,
so the outward flux of radiative energy in the radial direction is

Jrad = −Drad
dUrad

dr
= −16

3
lmfp σSB T

3 dT

dr
. (226)

The effective thermal conductivity κrad of the photons may be obtained by rewriting Eq. (226):

Jrad = −κrad
dT

dr
, with κrad ≡

16

3
lmfp σSB T

3 . (227)

The luminosity or total power radiated from inside the radius r within the star is simply

L(r) = 4πr2 Jrad = −64

3
π r2 lmfp σSB T

3 dT

dr
. (228)

Equation (228) may be used to make a rough estimate of the sun’s luminosity. Most of the fusion
energy is generated in the center of the sun (say r < R/2), so the luminosity at r = R/2 should
be the same as the observed luminosity at the surface. Estimating that T ≈ Tc/2 and −dT/dr ≈
(Tc − Ts)/R ≈ Tc/R at the midpoint, one finds

L ≈ 2

3
π R lmfp σSB T

4
c . (229)

Using solar values of R�, lmfp ≈ 2 × 10−3 m, and Tc ≈ 1.6 × 107 oK, one finds L ≈ 1 × 1028 W.
Actually the luminosity of the sun is L� ≈ 3.78 × 1026 W. The estimate was too high because it
is highly dependent on the temperature, and the actual temperature at the mid-point in the sun
is lower than Tc/2. Nonetheless, the estimate was in the right ballpark and illustrates the basic
physics of radiative energy transport in stars.

Note that the sun’s luminosity was calculated without even discussing its fusion rate. Regardless
of whether it is producing fusion energy, a star of a given size will compress and heat its center as
in Eq. (218) and transport that energy to its surface as in Eq. (228). If fusion energy is produced
in the core, it will replace the energy lost by transport to the surface, and the star will be stable.
If fusion energy is not produced, loss of energy from the core will cause the star to contract and
feed off its gravitational energy, as will be shown in Section 5.3.

Conductive Energy Transport

Electrons can also transport energy in stars. Using typical solar values of T = Tc/2 = 8× 106 oK,
ln Λ ≈ 3, and lmfp ≈ 2 × 10−3 m for photons, the electron thermal conductivity from Eq. (93)
is 25,000x smaller than κrad from Eq. (227). Therefore, conductive energy transport by electrons
(and ions) may be neglected in comparison with radiative energy transport by photons.

One exception to this rule is that electron heat conduction can become very significant if the
electrons behave as a gas of degenerate Fermi particles instead of as an ideal gas as they have been
treated here. From statistical physics, the Fermi energy EF for free electrons is

EF =
h̄2

2me

(
3π2ne

)2/3
= 3.65× 10−15 n

2/3
e, cm−3 eV . (230)
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As long as kBT � EF , the electrons will behave as a classical ideal gas. However, if kBT � EF ,
the electrons will be degenerate and will conduct heat very well, just as they do in metals. This
is because degenerate electrons carry larger energies ∼ EF instead of ∼ kBT , move at higher
speeds ∼ vF ≡

√
2EF /me instead of ∼ vte, and travel further before colliding, since the particle

phase space is too full to permit many collisions. Electrons will then become the dominant energy
transport mechanism and cool the core of the star. In calculations of the electron pressure, it would
also be necessary to use the pressure-density relationship for a Fermi gas instead of that for an ideal
gas. If kBT ∼ EF , the electrons will be partially degenerate.

For the sun’s central electron density ne, c ≈ 6×1025 cm−3, the Fermi energy is EF ≈ 560 eV. Since
this is significantly smaller than the central temperature Tc ≈ 1400 eV, we have been justified in
treating the electrons classically. Note from Eq. (230) that the Fermi energy for ions is me/mi

smaller than that for electrons, so degeneracy of the ions is not a concern.

Convective Energy Transport

Energy may also be transported by convection, in which regions of plasma rise within a star,
carrying their thermal energy with them. Suppose some volume of plasma rises by an amount dr,
as shown in Fig. 23(b). As pressure decreases with altitude, the volume’s pressure will drop and
the volume will expand. The densities outside and inside the risen volume are

ρout(r + dr) = ρ(r)−
∣∣∣∣dρdr

∣∣∣∣ dr (231)

ρin(r + dr) = ρ(r)− dρ

dp

∣∣∣∣dpdr
∣∣∣∣ dr = ρ(r)− 1

γ

ρ

p

∣∣∣∣dpdr
∣∣∣∣ dr , (232)

in which Eq. (232) used Eq. (133). The gradients dρ/dr and dp/dr are both negative, so they have
been written as the negative of their absolute values to make the minus signs explicitly clear.

Stability against convection requires that ρin > ρout, causing the risen volume of plasma to sink
back to its original level. Using Eqs. (231) and (232), this condition implies that∣∣∣∣dρdr

∣∣∣∣ >
1

γ

ρ

p

∣∣∣∣dpdr
∣∣∣∣ for stability

against convection
(233)

For an ideal gas, ρ may be rewritten in terms of the temperature and pressure:

p

ρT
= constant =⇒ dρ

dr
=

ρ

p

dp

dr
− ρ

T

dT

dr
. (234)

Substituting Eq. (234) into Eq. (233), one obtains∣∣∣∣dTdr
∣∣∣∣ ≤ (

1− 1

γ

)
T

p

∣∣∣∣dpdr
∣∣∣∣ Thermal gradient

limited by convection
(235)

If |dT/dr| calculated from radiative energy transport in Eq. (228) is less than the right side of Eq.
(235), convection will not occur and photons will be the dominant method of energy transport.
However, if |dT/dr| calculated from Eq. (228) exceeds the right side of Eq. (235), convection will
occur, and convective energy transport will limit the actual temperature gradient to be equal to
the right side of Eq. (235).
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5.3 Fusion Reactions and Power

Having calculated the temperature, density, luminosity, and other conditions in stars, we can
now examine the energy production under those conditions. While fusion is the most important
energy source in stars, thermal energy and gravitational potential energy should also be considered.
Multiplying the left and right sides of Eq. (213) by −

∫
dr 4πr3 and integrating yields the thermal

and gravitational energies and gives a useful relation between them:

Left
side:

∫ R

0

dp

dr
4πr3dr =

∫ R

0
3p4πr2dr = 2

∫ R

0

3

2
(np + ne)kBT4πr2dr = 2ET =

2× total thermal
energy of star

(236)

Right
side:

∫ R

0

−Gρ(r)m(r)

r
4πr2dr = EG =

Total gravitational
potential energy of star

(237)

Left side = right side =⇒ 2ET = −EG Virial theorem (238)

Equation (236) used integration by parts. The resulting Eq. (238) is a form of the virial theorem
from classical mechanics. To understand the physical meaning of Eq. (238), one can consider a
star that contracts in size. Because the star’s mass becomes more closely packed, the gravitational
potential energy will decrease by an amount |∆EG| and become more negative. Since energy is
conserved, this released gravitational energy must go somewhere. According to Eq. (238), half of
it will become additional thermal energy in the star, ∆ET = |∆EG| /2; gravity basically performs
work on the star by compressing it, thereby heating it in accordance with Eq. (134). The other
half of the released potential energy cannot be retained within the star and thus is radiated away
from the star’s surface.

Therefore, a star can contract and radiate a total energy of up to |EG| /2 without even tapping into
its nuclear energy sources. The length of time that the sun could maintain its present luminosity
in this way is called the Kelvin time,

τ
Kelvin

=
|EG �|
2L�

≈ 8

15
π2G ρ�

2 R5
�

L�
, (239)

in which the crude approximations ρ(r) = ρ� and m(r) = (4/3)πr3 ρ� were used with Eq. (237) to
obtain the estimated answer in Eq. (239). Using the solar values, the Kelvin time is τ

Kelvin
≈ 3×1014

sec ≈ 10 million years. Hence gravitational energy could sustain the sun for a long time by human
standards, though not for the estimated 4.5 billion years that the sun has existed. For that, a
nuclear energy source is required.

Stars produce most of their energy by fusing 1H into 4He. The mass of one 1H nucleus is mp =
1.6726× 10−27 kg and that of one 4He nucleus is mα = 6.6432× 10−27 kg. The total mass of four
protons is larger than the mass of the helium nucleus they produce by fusion, so the excess mass is
converted into energy,

Efus = ∆mc2 = (4mp −mα)c2 = 26.5 MeV (240)

The fraction of the initial hydrogen mass that is converted to energy is

∆m

m
=

4mp −mα

4mp
= 0.007 (241)

Assuming that the sun was initially composed entirely of hydrogen, complete fusion of that hydrogen
into helium would maintain the sun’s present luminosity for a time

τ
solar fusion

=
0.007M�c

2

L�
= 3.3× 1018 sec = 100 billion years. (242)
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The actual life span of the sun is predicted to be only 10 billion years. The sun originally contained
some helium, it will consume its hydrogen faster than the present rate as it nears the end of its life,
and it will still contain some hydrogen even when it is no longer able to sustain fusion reactions.
Currently the sun is about halfway through its life span.

There are several pathways by which 1H can be fused into 4He. The simplest is the proton-proton
chain, which is named after its first step:

(1) 1H +1H → 2H + e+ + νe
(2) 2H +1H → 3He + γ
(3) 3He +3He → 4He + 21H

 Proton-proton chain 1 (pp1) (243)

There are two alternative proton-proton chains, pp2 and pp3. In these versions, steps (1) and (2)
proceed as above, but the third step is 3He +4He → 7Be + γ. Then the 7Be acquires another
proton, either after (pp2) or before (pp3) undergoing a beta decay, ultimately producing two 4He.

Step (1) is the rate-limiting step in the proton-proton chains, since the reaction requires both a
fusion event and a weak nuclear decay. Thus the rate of step (1) may be used with Eq. (61) to
calculate the total rate of fusion energy production per volume by all the proton-proton chains:

Pfus
vol.

=
1

2
n2
p 〈σv〉pp

Efus
2

. (244)

The fusion of a pair of protons represents only half of a final 4He, so the energy Efus produced per
4He has been divided by 2. Using the central density previously calculated and assuming that half
of the hydrogen has already been burned, one finds np ≈ 3× 1031 m−3. At Tc = 1.5× 107 oK =1.4
keV, the Maxwellian-averaged reactivity is 〈σv〉pp = 1× 10−49 m3/sec. Neutrinos carry away some
energy from the proton-proton cycles, so the average fusion energy from Eq. (240) is lowered to
Efus ≈ 23 MeV. Using these values in Eq. (244), the fusion power density is Pfus/vol. ≈ 83 W/m3.

Fusion in a layer at radius r within a star contributes to the luminosity passing through that radius:

dL(r)

dr
= 4πr2 Pfus

vol.
. (245)

Because both the temperature and the density decrease with radius, almost all of the fusion occurs
in the core of the star (provided that unburned fuel remains there), as pictured in Fig. 23. As
a simple model, consider a core of radius rcore with uniform Pfus/vol. ≈ 83 W/m3 as calculated
above. For this core to account for the entire luminosity of the sun, its radius must be

rcore

R�
=

(
L�

(83 W/m3)(4/3)πR3
�

)1/3

≈ 0.15 . (246)

Therefore, the sun’s fusion power is produced within a small, dense, hot core.

Another fusion pathway within stars employs 12C as a catalyst; the carbon accumulates four protons
in a series of reactions, then releases them as a 4He nucleus. This carbon cycle proceeds as follows:

(1) 12C +1H → 13N + γ
(2) 13N → 13C + e+ + νe
(3) 13C +1H → 14N + γ
(4) 14N +1H → 15O + γ
(5) 15O → 15N + e+ + νe
(6) 15N +1H → 12C +4He


Carbon cycle (247)
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Due to the large charges of the nuclei in the carbon cycle, the Coulomb barriers are higher and the
reactions require higher temperatures than the proton-proton chains. However, if the temperature is
high enough and enough carbon is present, the carbon cycle can outpace the pp chains, because none
of the steps in the carbon cycle requires simultaneous fusion and weak decay events. The carbon
cycle begins to dominate at Tc > 1.8× 107 oK, somewhat hotter than the sun’s temperature.

After a star has fused its central hydrogen into helium, the drop in fusion power will cause the star
to contract. As has been discussed with regard to Eq. (238), the contraction will cause the star to
heat up. Once its center reaches Tc ≈ 1× 108 o K, helium burning becomes possible:

(1) 4He +4He → 8Be
(2) 8Be +4He → 12C + γ

}
Helium burning (248)

Although 8Be decays after ∼ 3 × 10−16 sec, it exists long enough for step (2) above to have a
non-negligible chance of occurring. Helium burning releases 7.3 MeV per final 12C, or 2.4 MeV per
initial 4He. This may be compared with 26.5 MeV per 4He for hydrogen fusion. Thus for a given
mass, helium fusion can produce ∼ 1/10 as much energy as hydrogen fusion, or in other words
helium fusion can sustain a star at a given luminosity for only ∼ 1/10 as long as hydrogen fusion.

In the temperature range Tc = 108 − 109 oK that can occur in the final phases of stellar evolution,
heavier elements may be formed by a bewildering array of reactions, such as 12C+4He → 16O+γ
and 12C+12C→ 23Na+1H. Most of these reactions do not produce much energy, and they cannot
sustain a star for a relatively long period of time. However, they do explain how many of the
heavier elements in the universe have been produced.

It is worth comparing stellar fusion with the man-made approaches that will be discussed in Sections
6 and 7, inertial confinement fusion, thermonuclear explosive devices, and magnetic fusion:

• Fusion power density. The sun’s fusion power density is Pfus/vol. ≈ 83 W/m3 in the core,
or 0.27 W/m3 averaged over the sun’s entire volume. In contrast, man-made fusion approaches
must produce all their power, typically > 1 GW, within at most a few m3 of plasma, since
the hardware to maintain a much larger volume of plasma would be prohibitively expensive.

• Fusion time. Fusion time is another way to state the same problem. The sun takes ∼ 10
billion years to consume its fusion fuel, but in order to be efficient, a bomb or ICF capsule must
consume its fuel within a fraction of a second. While magnetic fusion approaches have the
luxury of somewhat more time, they must still must operate very rapidly by stellar standards.

• Ion temperature. To increase the fusion power density and decrease the fusion time, man-
made approaches must have Ti ∼ 10− 100 keV instead of Ti ≈ 1.4 keV as in the sun.

• Confinement. Whereas a star’s gravity keeps ions from escaping before they fuse, man-made
approaches must use magnetic fields or the particles’ own inertia to keep them from escaping.

• Radiation losses. If photons are in thermal equilibrium with the plasma, Trad ≈ Ti, radi-
ation losses will be ∝ T 4. This loss is large for stars but downright obscene for the higher
Ti of man-made fusion. The loss can be minimized by surrounding the plasma with enough
material to impede the radiation’s escape, like the mantles of stars or the uranium tamper in
a thermonuclear explosive device. That is not practical for inertial confinement and magnetic
fusion, so an alternate solution is to let the radiation escape to keep Trad � Ti. Then the
radiation loss is the bremsstrahlung ∝

√
Te value. As shown in Section 1.5, only a few fusion

fuels can produce enough energy to overcome this bremsstrahlung loss.
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5.4 Stellar Evolution
Having examined the behavior of stars during the main phase of their life cycle, we will now discuss
how stars initially form and how they expire when they have exhausted their fusion fuel.

A protostar is a cloud of mostly hydrogen that is contracting and heating up [in accordance with
Eqs. (238) and (239)] to form a star. One can calculate the minimum mass Mmin a protostar must
have in order to initiate fusion reactions and become a star. Using Eq. (218) and Tc ≈ 1.6×107 oK
for the sun, the central temperature of a protostar is

Tc = 1.6× 107 oK

(
M

M�

) (
R�
R

)
(249)

Similarly, using Eq. (230) and the central Fermi temperature TF ≈ 6.5 × 106 oK for the sun, the
central Fermi temperature of a protostar may be written as

TF = 6.5× 106 oK

(
nec
nec�

)2/3

(250)

≈ 6.5× 106 oK

(
ne
ne�

)2/3

= 6.5× 106 oK

(
M

M�

)2/3 (R�
R

)2

(251)

Proton-proton reactions become significant once the central temperature rises to Tc ≈ 8× 106 oK.
If the protostar has a mass M > Mmin, it will collapse until the central temperature from Eq.
(249) is hot enough to produce fusion reactions, and a star will be born. If M < Mmin, the
Fermi temperature will exceed Tc and the protostar’s core will become electron-degenerate before
it reaches fusion temperatures. The degenerate electrons’ thermal conductivity will cool the core
and their Fermi pressure will prevent further collapse. The result is a stable, unignited gas giant
like Jupiter. Using Eqs. (249) and (251) and setting Tc = TF = 8× 106 oK yields Mmin ≈ 0.3M�.
The approximation in Eq. (251) was rather crude, and one can debate the exact point at which TF
becomes too high to permit fusion reactions; more detailed calculations give:

Mmin ≈ 0.08M� Minimum mass for star formation (252)

Toward the end of its life, after a star has consumed most of the hydrogen in its core, it collapses
and heats up until it is hot enough to fuse the hydrogen that remains in its mantle; this is called
shell burning. The fusion reactions in the mantle cause the surface layers of the star to expand
drastically and cool, resulting in an enormous red giant star. Further contraction and heating of
the core can lead to the fusion of helium and progressively higher elements. In these final stages,
a star often blows off its outer layers.

The remaining stellar core collapses to form one of three objects, depending on its mass M :

1. White dwarf. If M < Mwhite dwarf max, the star contracts until its degenerate electrons’ Fermi
pressure supports it, forming a white dwarf that slowly radiates away its residual energy.

2. Neutron star. If Mwhite dwarf max < M < Mneutron star max, gravity overcomes the Fermi
pressure at the white dwarf stage. The star continues to contract until it squeezes its protons and
electrons together to form neutrons by inverse beta decay. Such a neutron star acts like a giant
nucleus of neutrons and is supported against further collapse by the neutrons’ Fermi pressure.

3. Black hole. If M > Mneutron star max, gravity overcomes even the Fermi pressure of the
degenerate neutrons and the star continues to collapse. From general relativity, the star becomes a
black hole once its radius becomes less than the Schwarzschild radius RS ≡ 2GM/c2. Nothing–
not even light–that ventures within the Schwarzschild radius can resist being sucked in by the
extreme gravitational field. See the general relativity summary for more information.
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The limiting masses Mwhite dwarf max and Mneutron star max may be estimated in a simple fashion.
Consider a collapsed star with a density n of degenerate fermions. The degenerate fermions are
electrons in a white dwarf and neutrons in a neutron star. For a very dense star that approaches
the appropriate limiting mass, the degenerate particles will have such a large Fermi energy that
they will be relativistic. From the statistical physics summary, the Fermi energy per degenerate
relativistic fermion is

EF ∼ h̄cn1/3 ∼ h̄cN1/3

R
, (253)

where n has been estimated from the total number N of the fermions and the radius R of the star.

The gravitational potential energy per degenerate fermion is roughly

EG ∼ −
GMmper fermion

R
= −

Gm2
per fermionN

R
, (254)

in which the total mass of the collapsed star has been written as M = Nmper fermion, where
mper fermion is the amount of stellar mass per degenerate fermion. In a white dwarf composed
of typical fusion products, on average one proton and one neutron accompany each electron, so
mper fermion = me + mp + mn ≈ 2mn. In a neutron star, most of the mass is in the form of the
degenerate neutrons, so mper fermion = mn.

Thus the total energy per degenerate fermion consists of two terms, both of which vary like 1/R:

E ∼ EF + EG ∼
h̄cN1/3

R
−

Gm2
per fermionN

R
, (255)

The collapsed star will seek a stable equilibrium that minimizes E. If E > 0 in Eq. (255), the
energy will be decreased by increasing R. Part of the fermions will then become nonrelativistic,
causing the radial dependence of EF to change to ∼ 1/R2 as in Eq. (251). Eventually EG will
begin to dominate over EF and the system will reach equilibrium at some finite radius R.

On the other hand, if E < 0 in Eq. (255), the energy can be decreased without bound by decreasing
R, and the star will be unstable to further gravitational collapse. Setting E = 0 in Eq. (255), the
threshold for stability occurs at a maximum number of degenerate fermions,

Nmax = 3

(
h̄c

G

)3/2 1

m3
per fermion

, (256)

where the coefficient 3 comes from calculating the Fermi and gravitational energies more precisely
by numerically integrating to determine the density profile [12].

The maximum fermion number is equivalent to a maximum stellar mass of

Mmax ≡ Nmax mper fermion ≈ 3

(
h̄c

G

)3/2 1

m2
per fermion

. (257)

The radius of a stable collapsed star near the limiting mass may be found by inserting Eq. (256)
into Eq. (253) and assuming that the fermions are somewhat relativistic, EF ∼ mof fermionc

2 (here
mof fermion is the actual mass of each degenerate fermion):

R ≈ 3

√
h̄3

Gc

1

mof fermion mper fermion
. (258)

The factor of 3 in Eq. (258) again comes from more detailed calculations [12].



58 Plasma Physics and Fusion

Applying Eqs. (257) and (258) to a white dwarf (mof fermion = me, mper fermion ≈ 2mn) produces

Mwhite dwarf max ≈ 1.5M� R ≈ 107 m ρ ∼ 106 g/cm3 White dwarf (259)

Equations (257) and (258) may also be applied to a neutron star (mof fermion = mper fermion = mn),
although general relativity and other effects lower the maximum mass by about a factor of 2 [12]:

Mneutron star max ≈ 3M� R ≈ 104 m ρ ∼ 1015 g/cm3 Neutron star (260)

Thus white dwarfs have masses up to 1.5M�, neutron stars are in the range 1.5− 3M�, and black
holes formed from stars have masses greater than 3M�.

Pulsars are particularly interesting types of neutron stars that emit periodic bursts of radiation.
When a star collapses, its magnetic field is compressed and greatly strengthened. Trapped electrons
above the magnetic poles emit narrow beams of cyclotron radiation. A pulsar rotates about an
axis that is different from its magnetic axis, causing beams of cyclotron radiation to sweep the sky
during each rotation. Depending on the pulsar, the cyclotron radiation may be anywhere from
radio to gamma wavelengths, and the rotation period may range from milliseconds to seconds [12].

5.5 Observational Data on Stars

A detailed discussion of stellar observational techniques and data is beyond the scope of this sum-
mary. Nonetheless, one should have a rudimentary understanding of how certain measurements are
made and how they confirm the preceding theoretical analysis of stars.

To a good approximation, stars act as black-body emitters of radiation. Using the Wien displace-
ment law from statistical physics, the surface temperature Ts of a star may be found from the peak
wavelength λpeak of the radiation emitted by the star:

4.965kBTs ≈
hc

λpeak
Wien displacement law (261)

For example, the peak emission wavelength of the sun is near the middle of the visible spectrum,
λpeak ≈ 5× 10−7 m, so its surface temperature is Ts� ≈ 5800 oK.

Typical surface temperatures Ts ∼ 6000 oK∼ 0.5 eV are low enough that electrons will be bound to
ions but high enough that some of the electrons will be in excited states. Spectroscopic observations
of transitions between these electronic states indicate the elemental composition of the stellar
surface. While the relative composition of a star’s interior will differ from its surface, these surface
measurements provide evidence of the specific nuclear reactions discussed earlier.

Further evidence for the nuclear reactions is provided by measuring the flux of solar neutrinos
arriving at the earth. Electron neutrinos are emitted by key steps in the proton-proton chains
and the carbon cycle, Eqs. (243) and (247). Because the neutrinos have such a small interaction
cross section, most of them escape from the sun and radiate through space. Along the way, they
change into a mixture of roughly equal parts electron neutrinos, muon neutrinos, and tau neutrinos.
Sensitive detectors on earth have been able to measure enough of the neutrinos to confirm the
expected solar output.

Finding the luminosity of a star requires measuring its distance and its apparent visual magnitude
as observed from the earth. Distances to nearby stars may be measured by trigonometric parallax
as the earth orbits the sun. For more distant stars, one basically assumes that their luminosities
are the same as the measured luminosities of closer stars with the same spectral properties.



Plasma Physics and Fusion 59

The luminosity, radius, and surface temperature of a star are related by the Stefan-Boltzmann law
for black-body radiators from the statistical physics summary:

L = 4πR2 σSBT
4
s Stefan-Boltzmann law (262)

Using L� and R� for the sun in Eq. (262) yields a surface temperature of 5750 oK, in good
agreement with the value calculated from the Wien displacement law. If a star’s luminosity and
surface temperature are determined, Eq. (262) can be used to calculate the star’s radius.

If a star is in orbit with a companion star or very massive planet (and the orbit is seen approximately
edge-on from earth), the orbit may be deduced from cyclical red- and blue-shifts in the star’s
spectrum, and then the star’s mass may be found from the orbit. Observations show that stars’
luminosities are strongly dependent on their masses, and this relationship may be understood
theoretically. From Eqs. (221) and (210), the photon mean free path varies like lmfp ∝ 1/ρ ∝
R3/M . Likewise, from Eq. (218), the central temperature varies like Tc ∝ M/R. Plugging these
relations into L ∝ R lmfp T

4
c from Eq. (229), one obtains L ∝ M3. Actually, the scattering cross

section of photons by ions depends on temperature and thus indirectly on mass, and this additional
mass dependence in lmfp alters the power dependence to be more like

L ∝ M3.5 Mass-luminosity relation (263)

Note that since the luminosity is ∝M3.5 but the fusion fuel supply is only ∝M , the life span of a
star is ∝ 1/M2.5; larger stars burn out much more quickly than smaller ones.

Assuming that the central temperature is roughly the same in all hydrogen-burning stars, from Eq.
(218) one would expect R ∝M . Based on empirical data, the real relationship is approximately

R ∝ M0.7 Mass-radius relation (264)

∝ L0.2 using Eq. (263) (265)

There are two main reasons why the mass-radius relationship is not quite linear. The assumption
that the central temperatures in stars are the same is not strictly valid–larger stars have hotter
cores. Moreover, a star’s radius is determined by a complex combination of radiative and convective
energy transport in different regions from the center to the surface.

Hertzsprung-Russell diagrams plot the luminosity versus surface temperature for a whole range
of stars. From Eq. (262), one would expect L ∝ T 4

s for stars that have the same radius, as shown
in Fig. 24(a). Yet because stars’ radii vary with their luminosities as in Eq. (265) the net result is

L ∝ T 6.7
s Luminosity-temperature relation for main sequence stars (266)

The exponent in Eq. (266) is approximate and empirical, just like the earlier exponents on which
it is based. A range of typical stars is plotted in Fig. 24(b). Most stars fall on the curve given by
Eq. (266), which is called the main sequence. However, some stars are far off the main sequence.
Comparing with Fig. 24(a), one can see that stars in the upper right corner of Fig. 24(b) must have
radii far larger than we have predicted. These are either protostars or red giants. Similarly, stars
in the lower left corner of Fig. 24(b) must have anomolously small radii; they are white dwarfs.

Observed stars are of many different ages, and approximately 90% of them are on the main sequence.
Thus a typical star spends about 90% of its life on the main sequence. As has been mentioned,
more massive stars use up their fuel more rapidly, so stars at the more massive/luminous end of
the main sequence are the first to finish their main sequence phase. Therefore, for a cluster of stars
of the same age, one can determine the cluster’s age by plotting a Hertzsprung-Russell diagram
of the stars and noting the luminosity/mass at which the main sequence terminates. The less
massive/luminous end of the main sequence is bounded by the minimum stellar mass of Eq. (252).
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Figure 24. Hertzsprung-Russell diagrams plotting stellar luminosity versus surface
temperature. (a) The luminosity-temperature relation is L ∝ T 4

s for stars of a specified radius
[given as log(R/R�) on each line]. (b) Typical observed values for a range of stars are plotted.
Stars initially form as large, cold protostars (1) collapse and heat up. Stars spend most of their
lifespan on the main sequence (2), more massive stars toward one end of the main sequence and
less massive stars toward the other end. After consuming most of their fusion fuel, stars move off
the main sequence and become red giants (3). Eventually all of the fuel is exhausted and stars
become white dwarfs (4) that slowly radiate away their residual thermal energy.

Because of distance, the only star whose surface can be studied in detail is the sun. The sun’s
surface rotates with a period of approximately 25 days at the equator and over 31 days near the
poles, so the sun definitely doesn’t act like a rigid body. Local magnetic fields on the surface can
be determined from the Zeeman splitting in spectral lines. Magnetic flux tubes with fields of up to
0.4 T are generated by mechanisms that aren’t well understood, and they leave and re-enter the
sun’s surface at various points. Where the flux tubes intersect the surface, the gas temperature
is approximately 3700 oK, somewhat cooler than the average surface temperature of 5800 oK.
(A magnetic flux tube inhibits convective heat transport to the local surface. Also, its magnetic
pressure partially supports the pressure of the surrounding surface material, so the gas within the
tube does not need as much pressure/temperature.) Using Eq. (262), these cooler areas emit
(3700oK/5800oK)4 ≈ 0.17 as much light as the surrounding surface, causing them to appear dark
in comparison; they are called sunspots. Because they are associated with leaving and re-entering
flux tubes, sunspots tend to occur in pairs. For unknown reasons, the sun’s overall magnetic field
reverses directions every 11 years, and this cycle governs the activity of the flux tubes and sunspots.

A thin atmosphere of gas extends above the visible surface of the sun. The inner part of the
atmosphere is called the chromosphere, and the outer part is termed the corona. The corona is
quite diffuse and actually extends outward by several solar radii. Shock waves generated within
the sun dissipate their energy within the corona, heating it to 1− 2× 106 oK, far hotter than the
surface. Because of its high temperature, the corona emits radiation in the X-ray region.

Electrons, protons, and a few heavier ions escape from the sun and radiate outward through the
solar system at ∼ 300 km/sec. The earth’s magnetic field generally deflects this solar wind.
However, peaks in the solar wind during flares in solar activity can create auroras in the upper
atmosphere at the earth’s poles and generate disturbances in the earth’s ionosphere that interfere
with radio communications.
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6 Inertial Confinement Fusion
One approach to man-made fusion is to raise fusion fuel to densities and temperatures comparable
to or exceeding those at the sun’s core. Only the sun’s vast amount of surrounding matter confined
by its gravitational field can oppose the extreme pressure of fusion fuel under those conditions.
Therefore, man-made systems that achieve the same conditions must operate transiently, rapidly
compressing and heating the fuel to obtain enough fusion reactions before the fuel blows apart from
its extreme pressure. Only the fuel’s inertia slows its outward expansion, so this approach is called
inertial confinement fusion (ICF). This section will describe ICF reactors that use small fusion
explosions; fusion explosive devices (hydrogen or H bombs) apply similar principles on a much
larger scale. Basic designs for these systems will be presented, and then the physics of implosion,
ignition, and energy gain will be discussed.

6.1 Basic Designs
The key requirement for ICF reactors and fusion explosives is that most of the fuel must fuse
before it blows apart. For the fusion reactions to occur rapidly enough, the fuel must initially be
compressed to a certain density, which can be calculated. For a DT mixture with density nD = nT ,
the mass density is ρ = (mD +mT )nD ≈ 5mpnD; from Eq. (62), fusion occurs on a timescale

τfus =
1

nD 〈σv〉DT
≈ 5mp

ρ 〈σv〉DT
. (267)

The compressed plasma expands at the speed of sound vs ≡
√
kBT/mi (where mi ≈ 2.5mp is the

average ion mass), causing the density and temperature and thus the fusion reactions to drop off
quickly (i.e., fusion rate ∝ n2 ∝ R−6). If fusion stops once the plasma radius expands by 1/3 of its
compressed value Rcompr, the confinement time during which fusion occurs is

τconf =
1

3

Rcompr

vs
≈ Rcompr

3

√
2.5mp

kBT
(268)

For a significant amount of fusion to occur, the confinement time must be longer than the fusion
time, τconf > τfus. Using Eqs. (267) and (268), this condition is equivalent to

(ρR)compr >
6

〈σv〉DT

√
2.5mpkBT ≈ 6 g/cm2 for DT with T = 20 keV (269)

ICF fuel capsules have a compressed radius much less than 1 mm, so the required density is much
higher than that of solid DT. Other fusion fuels are more difficult to fuse than DT and will require
even higher values of ρR and temperature.

An external energy source called a driver must be used to very rapidly raise the fusion fuel to the
required density and temperature. In ICF reactors, laser or particle beams serve as the driver. In
fusion explosives, the driver is a fission bomb.

As shown in Fig. 25, laser or particle beams may be used either directly or indirectly to drive ICF
[13, 14]. In direct drive, the beams are focused directly on a DT fuel capsule, compressing and
heating it to fusion conditions. In indirect drive, the beams are focused into a hollow hohlraum
of high-Z material (e.g., gold or lead) that surrounds the DT fuel capsule. The hohlraum walls are
heated to a temperature of 200-300 eV and emit black-body radiation in the X-ray range. These X
rays then compress and heat the DT to fusion conditions. Using the black-body X rays instead of
focusing the laser/particle beams directly on the capsule greatly improves the uniformity with which
the capsule surface is irradiated, thereby reducing surface perturbations which could grow into large
instabilities during capsule implosion. Hohlraums for particle beams also contain internal shields
(not shown) to prevent the beams from directly striking the DT capsule, prematurely heating the
fuel, and making it harder to compress. Note that the hohlraum is destroyed in each blast.
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Figure 25. Inertial confinement fusion (ICF) using laser or particle beams. (a) In direct
drive, the beams are focused directly on a DT fuel capsule, compressing and heating it to fusion
conditions. (b) In indirect drive, a hollow hohlraum of high-Z material is used to convert the beam
energy into X rays, which then irradiate the DT fuel capsule.
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Figure 26. Typical DT fuel capsule for ICF before and after compression. (a) Before
compression, the capsule has an outer ablative layer of plastic, a layer of solid cryogenic DT fuel,
and an inner DT gas core. (b) The plastic is ablated away by the time of maximum compression,
leaving a ∼ 10 keV low-density hot spot of DT fuel surrounded by a much denser but colder layer
of DT. Fusion begins in the hot spot and propagates outward into the rest of the DT.

Figure 26 shows a typical ICF fuel capsule before and after compression [13]. The driver gives a work
p dV to the capsule, where p is the driver pressure and dV the change in capsule volume during
compression; thus spherical shells can absorb more energy than solid pellets of the same mass.
Before compression, the capsule has an outer layer of plastic that can be ablated by the external
irradiation, acting as rocket exhaust to compress the rest of the capsule. Inside the ablation layer
is a shell of cryogenic solid DT. The hollow center of the capsule is filled with DT gas. The outer
plastic layer is ablated away by time t of maximum compression. A central hot spot of radius rhs

is heated to fusion temperatures (∼ 10 keV) by the converging shock waves, but it has a relatively
low density and only contains ∼ 2% of the total DT fuel. The remainder of the fuel forms a colder
but denser shell surrounding the hot spot with an outer radius ∼ 2rhs. Fusion reactions initiate in
the hot spot and spread outward into the rest of the DT, heating the fuel as they go.

Liquid lithium-6 might be flowed over the inner walls of an ICF reactor to protect them from the
repeated miniature nuclear explosions and breed tritium for new fusion capsules.
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Figure 27. Fusion explosive device [15-18]. (a) In the Teller-Ulam design, a hohlraum
encloses a fission bomb primary and a secondary that contains both fission and fusion fuel. (b)
Detonation of the fission primary creates X rays that ablate and compress the secondary. (c)
Compression of the secondary triggers reactions in its fission and fusion fuel.

To be storable, fusion explosive devices use solid room-temperature lithium deuteride instead of
cryogenic DT or DD fuel. LiD permits coupled tritium-breeding and fusion reactions [15]:

(A) n + 6Li −→ 4.8 MeV + 4He + T

↑ ↓ 6LiD Jetter cycle (270)

(B) n + 4He + 17.6 MeV −→ D + T

92.5% of natural lithium is 7Li, which can replace step A above with the endothermic reaction n
+7Li→ −2.5 MeV +4He + T + n. D + D fusion can also play a critical role in producing neutrons.

Figure 27 presents the ca. 1951 Teller-Ulam design for a fusion explosive device. This design and
the accompanying information are drawn solely from unclassified sources [15-18] and from obvious
extensions of indirect-drive ICF, which appears to copy much from its older and larger relative.
No classified sources were used. As a result, the design details may be somewhat off.

As shown in Fig. 27, a hohlraum casing of high-Z material (e.g., lead) encloses a fission bomb
primary and a cylindrical secondary that contains both fission and fusion fuel. A shield prevents
the primary from directly bombarding the secondary with radiation. At the center of the secondary
is a subcritical fission sparkplug of uranium-235 or plutonium-239. Surrounding the sparkplug is
solid lithium deuteride. Around the 6LiD is a uranium tamper and then an outer layer of ablative
material (e.g., plastic or just extra uranium). Note that the secondary could also be spherical and/or
hollow. Typically the primary and secondary are supported within the hohlraum by a lightweight
low-Z foam that will not interfere with the detonation process. The fission primary explodes first,
emitting radiation that heats the hohlraum, filling it with black-body thermal X rays. The X rays
ablate the outer layer of the secondary, and the exhaust compresses the rest of the secondary. The
radiation shield prevents direct X rays, neutrons, and electrons from prematurely heating the fuel
in the secondary. Compression of the secondary causes the sparkplug to become supercritical and
fission rapidly. Heat and neutrons generated by the sparkplug initiate fusion in the 6LiD, and
energetic neutrons from the fusion reactions cause the uranium tamper to fission.
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6.2 ICF Conditions

Drivers

Although indirect drive loses much of the driver energy while converting it to X rays, there are
several reasons for choosing it over direct drive: (1) The black-body radiation within the hohlraum is
much more uniform than the driver beams, minimizing perturbations that could lead to asymmetry
or instability during the implosion. (2) X rays more efficiently penetrate the dense ablated plasma
surrounding the fuel capsule, partially compensating for the loss in converting driver energy to X
rays. (3) Energetic electrons produced during laser beam absorption are much further from the
fuel capsule with indirect drive, thereby reducing premature heating of the fuel. (4) Indirect-drive
ICF better models the operation of fusion bombs, which is the most feasible application of ICF.

The maximum efficiency with which a hohlraum can convert laser energy to energy striking the fuel
capsule is 10− 20%. This efficiency is the product of two factors. The first is the ∼ 70% maximum
efficiency for converting laser beam energy to X rays in a hohlraum; this conversion efficiency is
roughly the same for ion beams as well. The second factor is the fraction of the X-ray energy that
strikes the fuel capsule. This fraction depends on the geometry and the ratio of the capsule surface
area to the hohlraum’s inner surface area, but it is typically ∼ 15 − 30% at best. This maximum
value arises because the hohlraum must be significantly larger than the capsule to accomodate the
laser beams and to make the black-body X-ray radiation uniform to the required tolerance.

A hohlraum cannot operate effectively above a certain temperature. If this temperature is exceeded,
material ablated from the inner surface of the hohlraum will form a plasma so dense that it prevents
the driver beams from entering the hohlraum; the plasma frequency approaches or exceeds the driver
beam’s frequency. Furthermore, parametric instabilities of the laser beams interacting with such a
dense plasma would accelerate electrons, which could preheat the fuel capsule. For a 0.35 µm laser
driver, the maximum permissable hohlraum temperature is approximately 300 eV.

To date, most of the high-energy ICF drivers have been lasers. Shorter laser wavelengths are greatly
preferred in order to better penetrate through the plasma that is created inside the hohlraum. The
National Ignition Facility and its forerunner Nova at the Lawrence Livermore National Laboratory
use neodymium glass lasers with a wavelength of 1.06 µm frequency-tripled to a final wavelength
of 0.35 µm. These lasers have a maximum overall efficiency of 1-2%, which is much too low for
an actual reactor. Krypton fluoride excimer lasers with a wavelength of 0.26 µm and a maximum
efficiency of 6 − 8% have been proposed by Los Alamos. It is hoped that novel solid state lasers
such an ytterbium-doped fluorapatite crystal pumped by an InGaAs laser diode array could produce
similar wavelengths with efficiencies as high as 10%, though much research remains to be done.

Although particle beams are more difficult to focus than lasers, they could make attractive drivers
because of the higher efficiency of particle accelerators. Heavy ion accelerators have a predicted
20 − 35% efficiency but still need a great deal of development. Sandia National Laboratory has
developed a series of light ion drivers with pulse energies up to 100 kJ. Electron beam drivers are
not desirable since electrons scatter and penetrate more easily than ions and could preheat the fuel.

ICF drivers must concentrate their energy into pulses that are shorter than the capsule implosion
time. For a capsule with a radius of ∼ 1 mm and an average implosion velocity ∼ 2× 107 cm/sec,
this implosion time is ∼ 5 nsec. It is also important for the driver power to start low and steadily
increase during the pulse time. Such adiabatic compression reduces the shock waves and the shock-
induced premature heating that could occur in the fuel if full power were applied immediately.
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Implosion

In a hohlraum filled with radiation at temperature Trad, the surface of the fusion capsule quickly
comes to the same temperature, vaporizes, and explodes outward at an exhaust velocity of

vexh ≈
√
kBTrad

mexh
, (271)

where mexh is the mass of particles in the vaporized exhaust. Clearly minimizing the exhaust
particle mass will maximize the exhaust velocity. Thus the best ablation material would be frozen
1H, which is feasible for ICF capsules, although a hydrogen-rich plastic is the most practical choice.
For mexh = mp and Trad = 200− 300 eV, Eq. (271) yields vexh ≈ 1.4− 1.7× 107 cm/sec.

The outward motion of material ablated from the capsule’s surface forces the rest of the capsule
to implode inward. If the capsule is ablated from an initial mass Minitial to a final mass Mfinal, the
peak implosion velocity vimpl may be found from the equation for conventional rockets:

vimpl = vexh ln

(
Minitial

Mfinal

)
Rocket equation for implosion velocity (272)

Thus for ICF with vexh ≈ 1.4− 1.7× 107 cm/sec and Minitial/Mfinal = 4− 8, the implosion velocity
is in the range vimpl ≈ 2− 4× 107 cm/sec.

One can calculate the pressure of the exhaust on the capsule. The radiation flux incident on the
capsule is Irad = σSBT

4
rad. Experimentally, about 30% of this incident energy is converted to exhaust

energy (the remainder going into capsule energy or being lost), so the exhaust pressure is

Pexh ≈ 0.3
Irad

vexh
= 0.3σSBT

7/2
rad

√
mexh

kB

(273)

For ICF with Trad = 200− 300 eV and mexh ≥ mp, the pressure is Pexh ≥ 30− 140 Mbar.

The efficiency of an ideal rocket (fraction of expended energy converted to kinetic energy of the
final mass) is

εrocket ≡
1
2Mfinal(∆v)2

1
2(Minitial −Mfinal)v

2
exh

=
(∆v/vexh)2

exp(∆v/vexh)− 1
=

[ln(Minitial/Mfinal)]
2

(Minitial/Mfinal)− 1
(274)

This efficiency reaches a maximum of 0.65 at ∆v/vexh ≈ 1.6 or Minitial/Mfinal ≈ 5. For an ideal
rocket, no more energy is added to the exhaust once it leaves the rocket. However, for a radiation-
driven ICF rocket, additional energy is absorbed by the exhaust even after it has left the capsule
and cannot exert more force on the capsule. This lowers the efficiency considerably. For direct-drive
ICF with a visible or near-UV laser wavelength, the maximum efficiency is 5-10%. For indirect
drive, the X rays penetrate better through the exhaust to be absorbed at the capsule surface, so
the rocket efficiency is 15-20%. Assuming a hohlraum efficiency of 20%, the overall efficiency is
∼ 4% for indirect drive, near the lower limit of the efficiency for direct drive.

Just as multiple stages are used to attain higher final velocities in rockets, they could be used
to reach higher implosion velocities in ICF. A multistage ICF capsule would have two or more
concentric shells, with the outer shells more massive than the inner ones. An imploding outer
shell would impart its momentum to the next inner shell; because of the lower mass of the inner
shell, this would correspond to a higher velocity. While this approach could theoretically attain
higher implosion velocities, the multishell structure would greatly exacerbate the Rayleigh-Taylor
instabilities that plague ICF, potentially doing more harm than good.
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Rayleigh-Taylor Instability

As discussed in Section 3.4, the Rayleigh-Taylor instability occurs when a heavy fluid layer is above
a light fluid layer and is pulled “down” by gravity, centrifugal force, or another force. ICF capsules
are prone to the Rayleigh-Taylor instability at two different points:

1. Early during implosion, the dense capsule shell is accelerated inward. Due to its inertia it
wants to lag behind, and it is opposed only by the surrounding low-density ablated plasma.
Thus perturbations at the surface of the dense capsule shell can grow into large instabilities.

2. In the later implosion phases, the solid DT shell decelerates as its inward inertial motion is
opposed by the low-density but high-pressure DT plasma in the center. In this case, pertur-
bations at the solid/plasma boundary can grow into serious Rayleigh-Taylor instabilities.

The instability growth rate determines how long the implosion can last before the instabilities
become too severe, or equivalently how large an uncompressed capsule can be compared to its
compressed radius. Assuming a constant acceleration a and initial capsule radius Rinit, the time
τimpl required for the implosion is

τimpl =

√
2Rinit

a
. (275)

Using Eq. (168) for the Rayleigh-Taylor instability growth rate γ, the number of e-foldings N
e−fold

of the instability during the implosion time is

N
e−fold

= γ τimpl =
√
k a τ2

impl . (276)

Instabilities with sizes comparable to the final compressed dimensions are of greatest concern, as
they could seriously disrupt the final compressed state of the capsule. By choosing an appropriate
instability wavenumber k ∼ 1/(2rhs) and using Eq. (275), one can rewrite Eq. (276) as

Cr ≡
Rinit

rhs
∼ N2

e−fold
, (277)

in which the convergence ratio Cr is defined as the ratio of the initial capsule radius to the final
hot spot radius. If the maximum tolerable number of instability e-foldings is 5-6, the maximum
convergence ratio is Cr ∼ 25− 36. This agrees with the results of more detailed calculations.

Constraints are also imposed on the uniformity of the acceleration. A local difference δa in the
initial inward acceleration will result in a perturbation δr in the final compressed radius:

δr ≈ 1

2
δa τ2

impl (278)

Combining Eqs. (278) and (275) yields the maximum permissable deviation δa for the acceleration
or δv for the implosion velocity:

δa

a
≈ δv

vimpl
≈ δr

Rinit
≈ 1

Cr

δr

rhs
. (279)

If the perturbation were comparable to the final compressed size, it would disrupt the compressed
fuel. It would also mean that a significant amount of the input energy had been wasted as kinetic
energy of the final perturbation instead of compression energy for the entire fuel mass. Limiting
the maximum perturbation to δr < rhs/4 and assuming Cr ∼ 30 gives

δa

a
≈ δv

vimpl
< 1% . (280)

This tolerance is so tight because the perturbation size is compared to the compressed radius, which
is ∼30x smaller than the initial capsule radius. Hohlraum radiation is typically much more uniform
than direct beam energy, and thus indirect drive is better able to meet this requirement.
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Ignition

External energy is used to heat only the central ∼ 2% of the ICF fuel mass to fusion temperatures,
since heating all of the fuel would require too much energy input. If fusion reactions can be ignited
in the central hot spot, they should heat and cause fusion in the rest of the fuel. The requirements
for igniting the hot spot may be determined by comparing the input and loss energies. There
are two sources of input heat energy, compressive energy provided from the external driver and
internally generated fusion energy that is deposited within the fuel. There are also two important
loss mechanisms, bremsstrahlung radiation and electron-mediated heat conduction.

The power Pin per volume V put into the DT fuel by the implosion process may be found from the
implosion velocity and the pressure p within the fuel:

Pin

V
=

p dV/dt

V
=

p A vimpl

V
=

3p vimpl

r
= 2.3× 108 ρg/cm3 TkeV vimpl, cm/sec

rcm

W

cm3
. (281)

If a volume of fuel has ρr > 0.3 g/cm2, α particles produced by DT reactions will leave essentially
all of their energy Eα = 3.5 MeV in the volume, adding a power Pα to further heat the fuel:

Pα
V

= nDnT 〈σv〉DT Eα = 8× 1033ρ2
g/cm3 〈σv〉cm3/sec

W

cm3
for (ρr)h.s. > 0.3 g/cm2 (282)

Bremsstrahlung radiation losses may be calculated by rewriting Eq. (33) as

Pbrem

V
= 3.0× 1016ρ2

g/cm3

√
TkeV

W

cm3
. (283)

Radiation scattering can occur in ICF plasmas just as in stars. At the temperatures of interest,
T ≥ 10 keV, Thomson scattering off electrons dominates over scattering off ions. Using Eq. (221)
with ρ ≈ 2.5mpne, one finds that scattering of radiation within the fuel becomes important for

ρr ≥ 2.5mp

σ
Thomson

≈ 6.3 g/cm2 (284)

Thus for typical hot spots with ρr ∼ 0.3 g/cm2, bremsstrahlung radiation is essentially free to
escape from the hot spot, and Eq. (283) may be used to calculate the bremsstrahlung power
loss for the hot spot. However, complete fuel capsules typically have ρR ∼ 6 g/cm2, so accurate
calculations must include the effects of internal radiation scattering.

Electron heat conduction at the edge of the hot spot may be calculated by using Eq. (93) and
estimating |dT/dr| ≡ feT/r, where fe ≈ 0.5 is an experimentally determined constant:

Pcond

V
=

A

V
κe

∣∣∣∣dTdr
∣∣∣∣ =

6.4fe24πε2o(kBT )7/2

r2√mee4 ln Λ
= 8× 1012 T

3.5
keV

r2
cm

W

cm3
. (285)

From Eqs. (283) and (285), electron heat conduction will be the dominant loss mechanism when

Pcond > Pbrem ↔ T > 15.5 (ρr)
2/3
h.s., g/cm2 keV (286)

Equation (286) is satisfied at temperatures typical of DT fusion, T ≥ 10 keV, and values of hot-spot
ρr large enough to confine the α particle energy, ρr ≈ 0.3 g/cm2.

Equations (281) and (282) show that α heating will dominate over implosion-driven heating for

Pα > Pin ↔ (ρr)h.s., g/cm2 > 0.3 g/cm2 (287)

Finally, the dominant energy gain and dominant energy loss may be compared. If T = 10 keV and

Pα > Pcond ↔ (ρr)h.s., g/cm2 > 0.3 g/cm2 , (288)

self-sustaining fusion reactions will occur in the hot spot and propagate outward into the rest of
the fuel pellet, heating all of the fuel to reaction temperatures by α heating.
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6.3 Requirements for ICF Energy Gain

By comparing the fusion energy produced by an ICF capsule with the energies needed to compress
and heat the capsule, the fundamental requirements for energy gain can be determined.

Equation (269) estimated the ρR required for ICF. A more detailed analysis gives the amount of
fusion as a function of any ρR. For nD = nT = ni/2, fusion reactions consume ions at a rate

dnD
dt

= −nDnT 〈σv〉DT =⇒ dni
dt

= −1

2
n2
i 〈σv〉DT (289)

By assuming that 〈σv〉DT and the density are approximately constant over the plasma volume and
the confinement time τconf , Eq. (289) can be integrated to obtain

1

nif
− 1

nio
=
〈σv〉DT τconf

2
, (290)

where nio is the initial ion density and nif is the final ion density.

One can define the fraction of the fuel that is burned up:

fburn ≡
∆ni
nio

=
nio − nif
nio

=⇒ nif = nio(1− fburn) (291)

Substituting this expression for nif into Eq. (290) gives an expression for the fuel burnup:

fburn =
niτconf

niτconf + 2/ 〈σv〉DT
=

ρR

ρR+ 6
√

2.5mpkBT/ 〈σv〉DT
≈

(ρR)g/cm2

ρR+ 6 g/cm2 for 20 keV DT (292)

Equation (292) used Eq. (268) and ρ ≈ 2.5mpni. It shows that ρR ≥ 6 g/cm2 is required to burn
up at least 50% of the fuel, confirming the earlier estimate in Eq. (269).

In DT fusion, 0.375% (17.6 MeV) of the particle rest mass is converted to energy, so the yield is

Eyield = 0.00375fburnMc2 = 3.38× 1011fburnMg J = 80fburnM t (293)

from Mg grams of DT, where 1 t= 4.2× 109 J is an energy equivalent to the detonation of one ton
of high explosive. Thus a little mass gives a big bang, which is good news for bombs but bad news
for ICF. To prevent a capsule explosion from destroying an ICF reactor, the capsule mass must be
kept very small. Assuming the largest explosion that can be contained in a reactor is approximately
1/4 t≈ 1 GJ, for 50% burnup the maximum capsule size from Eq. (293) is Mmax ≈ 6 mg.

A typical power plant size of 1 GW electric would require a gross fusion power of ∼ 3 GW, assuming
a thermal conversion efficiency of ∼ 1/3 and neglecting all input and loss powers. If the yield per
capsule is ≤ 1 GJ, an ICF reactor must detonate at least three capsules every second.

Holding ρR constant at the value in Eq. (269) needed for fusion, the fuel mass may be written as

M =
4

3
πR3ρ =

4

3
π

(ρR)3

ρ2
. (294)

Therefore, achieving the ρR required for fusion while keeping the pellet mass as small as possible
requires maximizing the density or compression. To attain ρR = 6 g/cm2 with a pellet mass M ≤ 6
mg, Eq. (294) shows that the compressed density must be ρ ≥ 400 g/cm3.

To be as efficient as possible, the fuel should first be compressed to the necessary density (while
being kept as cold as possible), then heated to fusion temperatures. If the fuel were heated before
or during compression, the added thermal pressure of the particles would oppose the compression
and reduce the maximum attainable density. As was shown for stars, when matter is compressed
sufficiently, its electrons become degenerate, thereby acquiring a relatively high Fermi energy EF .
Using ne = ni ≈ ρ/(2.5mp), the Fermi energy from Eq. (230) may be written as

EF =
h̄2

2me

(
3π2

2.5mp
ρ

)2/3

= 14ρ
2/3
g/cm3 eV . (295)
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The average energy per degenerate electron is 0.6EF , so compression to high densities requires
supplying that much energy to each electron. Since the total number of electrons is Ne = Ni =
M/(2.5mp), the energy required for compression is

Ecompress = 0.6EF
M

2.5mp
= 3× 105ρ

2/3
g/cm3Mg J . (296)

For a compressed density ρ = 400 g/cm3, Eq. (295) gives EF = 760 eV. Therefore, the fuel temper-
ature must be kept significantly below this value if the fuel is to remain Fermi-degenerate during
compression. Realistically, the electrons will have a finite temperature that opposes compression,
and some energy will go to the ions, so Eq. (296) is a minimum bound on the compression energy.

After compression, the ions (and inevitably the electrons) must be heated to a fusion temperature
T , which requires an input energy

Eheat = fheated(Ni +Ne)
3

2
kBT =

M

2.5mp
3kBT = 1.15× 108 fheated Mg TkeV J (297)

in which fheated is the fraction of the fuel that must be initially heated by input energy. If the reac-
tion is self-sustaining, the initial reactions will then heat the rest of the fuel to fusion temperatures.

For ρ = 400 g/cm3, limiting the heating energy to Eheat ≤ Ecompress limits the fraction of the fuel
that can be heated to 10 keV to fheated = 1.4%. Heating much more of the fuel would drastically
increase the required energy input. Thus in ICF, one strives to create a central hot spot that
contains only 1-5% of the total pellet mass.

Using Eqs. (296) and (297), the total energy required to compress a 6-mg DT capsule to ρ = 400
g/cm3 and heat ∼ 3% of its mass to 10 keV is ∼ 0.3 MJ. Assuming a 5% maximum efficiency
for coupling driver energy to pellet implosion, the minimum required driver energy is ∼ 6 MJ. If
additional energy is necessary to heat more of the fuel or to overcome instabilities, the required
driver energy could be much higher. In the 1980s, the Halite-Centurian underground nuclear tests
used fission bomb X-rays (currently the only driver of sufficient energy) to ignite ICF capsules.
The limited information available in unclassified sources suggests that capsules needed to absorb at
least 20 MJ to ignite [14], which would correspond to a 400 MJ driver assuming 5% overall coupling
efficiency. Even for a relatively high driver efficiency of 30%, operating the driver would require
∼ 1.3 GJ, far more than the 0.3− 0.4 GJ of electrical energy produced per capsule.

Another consideration is the peak fusion power that must be withstood and converted by the inner
walls of a reactor. As found earlier, an ICF reactor with 1 GW electric output must detonate at
least three 1-GJ capsules per second. Each detonation would release most of its 1 GJ of energy as
neutrons and X-rays during a time τconf ∼ τfus ≈ 5× 10−11 sec, as given by Eq. (267) for DT at 20
keV. This represents a cumulative duration of 1.5×10−10 sec for all three detonations each second.
In contrast, a magnetic fusion reactor of the same size could operate on a continuous or nearly
continuous basis, spreading the 3 GJ of energy out evenly over the second. Thus the inner walls of
an ICF reactor must withstand a peak power ∼ 7× 109 higher than a magnetic fusion reactor.

It is instructive to consider ICF with D-3He fuel, which is cleaner than DT but harder to burn.
Using Eq. (292), 50% burnup of D-3He at a representative temperature of 50 keV requires ρR = 74
g/cm2. The fusion yield is roughly the same as for DT, so the maximum capsule fuel mass is still 6
mg. Achieving the required ρR with this mass requires a compressed density of ρ = 1.7×104 g/cm3

according to Eq. (294). Including a factor of (3/2)2/3 in Eq. (296) to account for the different fuel
mass per electron, the required compression energy is 1.6 MJ. Allowing a comparable amount of
energy in order to heat the hot spot, the total absorbed target energy is ∼ 3 MJ. If the driver-target
coupling efficiency is 5%, the minimum required driver energy is 60 MJ.
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The most efficient drivers currently contemplated are heavy ion accelerators with efficiencies of
∼ 30%, so ∼ 200 MJ would be required to run the driver for D-3He. After converting the fusion
energy to electricity (either thermally or by directly converting the charged particles to electricity),
each fusion capsule would produce at most several hundred MJ. This energy must supply the
driver, make up for bremsstrahlung and other losses, and still have enough left over to make this a
worthwhile energy generation method. Yet the minimum driver energy would consume a sizeable
fraction of this output. Thus there is little margin to increase the driver energy if that proves
necessary in order to heat more of the fuel or minimize instabilities. While the situation would
improve with larger capsule sizes, increasing the size significantly beyond the 1 GJ maximum yield
that has been assumed here would probably destroy the ICF reactor. Therefore, ICF with advanced
fuels would be marginal at best and may not even be able to break even.

To summarize, ICF does not appear promising for power generation because of the following reasons:

• Minimum implosion energy. The Halite-Centurian experiments indicate that ICF cap-
sules may need to absorb as much as 20 MJ to ignite [14], as opposed to the 0.3 MJ theoretical
minimum predicted by Eqs. (296) and (297) for ideal conditions. This could require a driver
with an input energy > 1.3 GJ, exceeding the fusion output energy.

• Advanced fuels. ICF with advanced fuels like D-3He would require even more energy.

• Targets. A daunting engineering requirement of ICF reactors is an automated system to re-
process lithium breeder material into precisely fabricated DT targets, then inject and carefully
position the targets in the reactor chamber, all with a throughput of several per second.

• Port access and shielding. It would be very difficult to protect the target injection port and
driver beam injection ports from blast damage while still being able to use them, especially
with several injections and several detonations per second.

• First wall. Any fusion reactor must have inner walls that absorb and convert the fusion
energy, use neutrons to breed tritium if necessary, and do not ablate into the plasma or
otherwise interfere with the fusion process. Because the peak output power is ∼ 7 × 109

higher in ICF than in a continuous magnetic fusion reactor of the same time-averaged output
power, design and operation of these walls would be particularly challenging for ICF.

• Cost. The National Ignition Facility is estimated to cost $4 billion (and still rising!) and
will have 0.6 MJ of driver energy [14]. An ICF power plant would need a much larger driver
and additional equipment like a high-throughput automated target cycling system, rendering
it far more expensive than other power plants that electric utilities could build.

While ICF is probably not suitable for power generation, it could be useful for nuclear weapons
development. Since the U.S. no longer conducts test explosions of nuclear weapons, ICF could be
used for subscale tests of new weapon designs. As has been noted, ICF and nuclear bombs share
a great deal of physics in common. The similarity could be extended by adding fissile material
to an ICF target. Although the masses involved are far less than the usual critical mass for
fission, significant reactions might be attained with enough compression and/or fusion neutrons
[17]. (This potential performance-enhancing strategy is not an option for ICF reactors, as it could
greatly contribute to the radioactivity and the blast.) ICF might also be useful for measuring basic
materials properties at weapon-like conditions [17]. Of course, such subscale tests would not be as
good as full-scale tests for evaluating new weapons designs, but they may be the only option. An
additional application that is sometimes cited is predicting the readiness of existing weapons in the
stockpile, though there does not appear to be a convincing physics basis for this assertion.
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7 Magnetic Confinement Fusion
Fusion-temperature plasmas at ICF densities create too much pressure to be confined by any
man-made approach. To contain plasmas and circumvent some of the problems of ICF, one must
decrease the plasma pressure by lowering the density, typically to ni ∼ 1015 cm−3 [Eq. (142)].
Because a plasma would rapidly cool if it contacted material walls, it must be confined by force
fields. Confinement by electromagnetic wave pressure would require too much input power, and
static electric fields could only contain one particle species (ions or electrons), while encouraging
the other to escape [2]. One is thus led to use magnetic fields to confine plasmas. This section will
cover both open and closed magnetic field geometries that have been considered for fusion plasmas.
Engineering considerations associated with magnetic fusion reactors will also be presented briefly.

7.1 Open Magnetic Field Geometries

As explained in Sections 1.4 and 2.3, particles spiral tightly around magnetic field lines, so a
longitudinal magnetic field can confine a cylindrical plasma [Fig. 8(a)]. However, particles freely
move along the field lines and escape from the ends of the cylinder. By using a weak field Bo in the
middle and a stronger field Bm at the ends, the magnetic mirror effect can be employed to reflect
particles at each end back into the plasma, as shown in Figs. 6 and 28.
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Figure 28. Magnetic mirror confinement fusion system. (a) By compressing one end of
the mirror field in the vertical direction and compressing the other end in the horizontal direction,
the magnetic field lines can be made to curve inward, while still being stronger at the ends than
in the middle. This minimum-B configuration prevents the flute instability from occurring. (b)
End mirrors on either side of a central mirror catch particles (predominantly electrons) that escape
from a central mirror. The potential difference between the end mirrors and central mirror reduces
particle losses. When particles escape from the end mirrors, high voltage grids convert their kinetic
energy directly to electrical energy.

Because the mirror field lines in Fig. 6(a) curve outward, the system is susceptible to flute insta-
bilities, as discussed in Section 3.4. To avoid this problem, the geometry can be altered so that the
field lines curve inward yet are still stronger at the ends than in the middle [Fig. 28(a)].
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As shown in Fig. 6(b), particles whose velocities fall within the loss cone can readily escape from
each end of the mirror field. If there were no collisions between particles, particles within the loss
cone would escape and all other particles would be permanently trapped in the mirror. Collisions
do occur, though, continually scattering more particles into the loss cone on a time scale of order
τcol, which is taken as τii for ions and τei for electrons. More detailed calculations by Sivukhin [7]
indicate that particles escape by being scattered into the loss cone on a timescale

τmirror ≈ 0.8 ln

(
Bm
Bo

)
τcol . (298)

This confinement time is indeed of order τcol and only logarithmically increases with the mir-
ror ratio Bm/Bo. Electrons escape long before they acquire much energy from ions (τmirror, e ≈
0.8 ln(Rm/Ro)τei � τie), so if only the ions are heated, in principle the electrons could remain cool
and energy losses due to their escape could be minimized. In contrast, ions escape more slowly but
carry much more energy. Using Eqs. (72) and (298) for ln Λ = 20 and Bm/Bo = 10, one finds

niτmirror, i ≈ 4.0× 1011 ln

(
Bm
Bo

) T
3/2
i, keV

Z4 ln Λ

√
mi

mp
sec/cm3 = 4.6× 1010

T
3/2
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Z4

√
mi

mp
sec/cm3

=


7× 1012 sec/cm3 for 20 keV D+T (mi ≈ 2.5mp)
2× 1013 sec/cm3 for 50 keV D+D

2× 1013 sec/cm3 for 100 keV D+3He (mi ≈ 2.5mp; Zeffective ≈
√

2)

(299)

These results fall well short of the Lawson criteria in Eq. (68) for net fusion power production. In
order to reduce the end losses, researchers have added a small mirror field to each end of the central
mirror, creating a tandem mirror as shown in Fig. 28(b). Because electrons escape more quickly
than ions from the central mirror, an electrostatic potential difference develops between the central
mirror and end mirrors. By adjusting the potential difference and maintaining sufficient particle
densities in the end mirror, researchers have attempted to minimize the effects of end losses [4].
Grids with voltages ∼ kBT/e have also been employed at the ends to directly convert the kinetic
energy of escaping particles to electricity, as illustrated in Fig. 28(b).

As explained in Section 4, anisotropic velocity distributions can lead to instabilities. This occurs
in mirror systems because the loss cone is depleted of particles, and it can disrupt the plasma or
aggravate particle losses beyond the values calculated here [4]. Due to the problems with velocity-
space instabilities and the difficulty of sufficiently reducing particle losses at the ends, research into
mirror confinement fusion was cut back in the U.S. around 1990.

To avoid end losses, several mirrors can be connected end-to-end to create a closed torus, called the
ELMO bumpy torus [9]. Unfortunately, the magnetic constrictions at each mirror point cause
bad curvature of the plasma/field boundary and thus flute instabilities. Researchers have proposed
tricks such as created hot electron rings inside the plasma to prevent these instabilities, but it is
probably simplest to consider more straightforward toroidal systems like those in the next section.

While mirror fields are roughly cylindrical with the magnetic field lines escaping at each end,
researchers have also considered cusp magnetic fields that are generally polyhedral in shape and
have more than two points at which the magnetic field lines escape. These approaches suffer from
the same problems as magnetic mirrors, except they are even more severe [4].
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7.2 Closed Magnetic Field Geometries

To avoid large particle losses along magnetic field lines, the field lines are usually bent into a circle
to form a closed toroidal magnetic field Bt [Fig. 29(a) and (b)]. Section 2.4 showed that a poloidal
magnetic field Bp is necessary too in order to prevent charge separation and large E×B particle
drift losses [Fig. 29(b) and (c)]. Yet as noted in Eq. (155), MHD stability requires Bt/Bp > R/a, so
the poloidal magnetic field must not be too large compared to the toroidal field. Toroidal plasmas
also require a vertical magnetic field Bz to hold the plasma in equilibrium against the hoop and
tire tube forces, as explained in Section 3.1 [Fig. 13, Fig. 29(c) and (d)]. Bz is generally produced
by external vertical field coils above and below the torus.
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Figure 29. Magnetic confinement, which begins as a simple idea, is inevitably forced
by fundamental physical laws to become very complex, with requirements for three
different magnetic fields as well as a plasma current.

This requirement for an externally produced Bz is an example of a more general principle: a plasma
cannot be confined solely by magnetic fields created by plasma current–the confining magnetic fields
must be at least partially created by current-carrying coils outside the plasma. This is another form
of the virial theorem. It can be proved by integrating the MHD equilibrium equation (138) over
a volume enclosing the plasma [9], just as volume integration of the stellar equilibrium equation
(213) yielded the stellar virial theorem (238).

Four major toroidal approaches are considered below: the tokamak, stellarator, reversed field pinch,
and field reversed configuration. The key difference among them is how they produce Bt and Bp.
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Tokamak

In a tokamak [Fig. 30(a)], external poloidal coils create a toroidal field Bt, int inside the plasma and
Bt, ext outside the plasma, while induced toroidal plasma current creates an external poloidal field
Bp, ext. The toroidal current can be induced by using the plasma torus as the secondary coil in a
transformer. Passing a time-varying current through the primary coil of the transformer induces a
time-varying toroidal current in the plasma. Because the plasma current and accompanying poloidal
field are inherently transient, such tokamaks cannot be operated continuously. For continuous
operation, it has been proposed to use the bootstrap current (Section 2.4) or fire electromagnetic
waves or neutral particle beams into the plasma to maintain a steady-state toroidal current, but
these techniques need further development.
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Figure 30. Tokamak. (a) Bt is created by poloidally arranged coils carrying current Ip. Bp is
produced by an internal toroidal plasma current Jt. By using the toroidal plasma as the secondary
winding of an iron transformer yoke and passing a time-varying current through the primary wind-
ing, a time-varying Jt is induced in the plasma. Vertical field coils [Fig. 10(c)] are also required
but not illustrated here. (b) Actual toroidal plasmas often have a D-shaped cross section. This
minimizes the width of the plasma and the problems caused by the magnetic gradient across that
width. It also puts most of the plasma near the inner plasma/magnetic field boundary, which has
the right curvature to avoid the flute instability.

From Eq. (139), the plasma pressure p at the plasma boundary must satisfy the condition

p +
B2

t, int

2µo
=

B2
t, ext

2µo
+

B2
p, ext

2µo
(300)

Assuming that Bt, int and Bt, ext are not very different, one finds the poloidal β value

βp ≡
p

B2
p, ext/2µo

≈ 1 . (301)

Actually βp ≈ 0.5 is more typical, due to small differences between Bt, int and Bt, ext.

Whereas Bp is simply created by plasma current, Bt must be produced by external field coils, so
the toroidal value βt is more relevant than βp. βt may be estimated from βp and Eq. (155):
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βt ≤ 5% for typical values of βp ≈ 0.5, a/R ≤ 1/3, and qs > 1. Recall from Eq. (141) that
Pfus ∝ β2. The low β and the intense cyclotron radiation losses due to the large Bt in the plasma
make it very difficult for tokamaks to burn D+3He or possibly even D+D fuel; D+T is more feasible.

Throughout our analyses we assume a circular plasma cross section for simplicity, but it is actually
often D-shaped [Fig. 30(b)]. By reducing the width of the cross section, one minimizes the difference
in Bt between the inner and outer edges of the plasma and the problems that difference can cause.
The D shape also puts most of the plasma near the inner plasma/magnetic field boundary, which
is concave and thus stable against flute instabilities (Section 3.4), unlike the outer boundary.

Stellarator

In tokamaks, external poloidal coils create the toroidal magnetic field, while internal toroidal plasma
current produces the poloidal magnetic field. In stellarators, heliotrons, and torsatrons (Fig.
31), the external coils are altered into a helix, with components of their current flow in both the
poloidal and toroidal directions. Thus the external coils create both the toroidal and poloidal
magnetic fields, and it is not necessary to induce a plasma current. For this reason, stellarators and
their cousins permit straightforward steady-state operation, which is an advantage over tokamaks.

(a) (b) (c) 

Arrows indicate direction of current flow in coils 

Figure 31. (a) Torsatron. (b) Heliotron. (c) Stellarator. Only a short section of the torus
is shown. Each configuration has more coils than the previous one, but the common characteristic
of all three configurations is that external coils carry both poloidal and toroidal current to create
the necessary toroidal and poloidal magnetic fields.

Torsatrons only have helical coils carrying current in one direction [Fig. 31(a)], heliotrons have
those helical coils plus poloidal coils [Fig. 31(b)], and stellarators have helical coils carrying current
in both directions as well as poloidal coils [Fig. 31(c)]. Having fewer coils makes a fusion reactor
simpler and allows the plasma to occupy more of the reactor’s volume. However, having more coils
permits greater control over the poloidal and toroidal magnetic fields if adjustments are needed.

While stellarators and their cousins use external coils instead of plasma current to create the
poloidal field, the resulting magnetic fields resemble those in tokamaks. Therefore, the β limit is
the same as that calculated for tokamaks. Moreover, neoclassical diffusion of particles still applies,
although the equation for neoclassical diffusion in the banana regime must be modified because the
particle orbits assume a different shape [4].
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Reversed field pinch

Plasma current is generally electrons moving along the magnetic field lines. In a tokamak, the
field lines are relatively straight (qs > 1) and the current is primarily toroidal. Yet in a reversed
field pinch (RFP), the internal field lines and hence the plasma current assume a spiral shape, so
that the current has a significant poloidal component as well as a toroidal one [Fig. 32(a)]. This
poloidal plasma current produces a toroidal magnetic field Bt that opposes that created by the
external poloidal coils. Near the center of an RFP plasma, the internally produced Bt actually
overcomes the externally created one. Thus the total Bt points in one direction near the edge of an
RFP plasma and in the other direction near the plasma’s center, as shown in Fig. 32(b). Because
RFPs (like tokamaks) require induced plasma current, their operation is inherently pulsed.
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Figure 32. Reversed field pinch. (a) Particles following the tightly spiraling magnetic field
lines carry a plasma current with a large poloidal component, producing an internal toroidal field
that opposes the toroidal field of the external coils. (b) The sum of the internally and externally
created toroidal fields is a field that points one way inside the plasma and the other way outside
the plasma.

Whereas tokamaks cannot have more plasma current than the Kruskal-Shafranov limit [Eq. (154)
without violating qs > 1 and becoming unstable, the whole idea of RFPs is to produce tight spiral
field lines with qs < 1. Therefore the Kruskal-Shafranov limit is irrelevant and RFPs can use as
much plasma current as is desired for Ohmic heating. In lieu of the qs > 1 condition, MHD stability
is ensured by exploiting the strong shear in the toroidal magnetic field and by adding a conducting
shell around the plasma (see Section 2.3 and [9]). Due to their creative use of plasma currents and
internally generated magnetic fields, RFPs can achieve values of β as high as ∼ 30%.
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Field reversed configuration

In a field reversed configuration (FRC), a plasma is confined in a magnetic mirror field, and
a ring of strong plasma current is induced [Fig. 33(a)], creating a poloidal field that helps confine
a torus of plasma [Fig. 33(b)]. The corresponding toroidal field is produced by passing a current
axially through the mirror plasma, and the vertical field needed to hold the torus in equilibrium
is simply the mirror field. FRCs are sometimes called spheromaks when the mirror is short and
roughly spherical as in Fig. 33. Like RFPs, FRCs make extensive use of plasma-current-created
magnetic fields and might attain β ≥ 30%. Whether they are steady state or pulsed depends on
how the current ring is produced.
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Figure 33. Field reversed configuration (FRC). (a) A plasma is confined in a mirror field,
and a ring of plasma current is induced. (b) The current ring produces a poloidal field that confines
a torus of plasma. (c) Because the magnetic field of the FRC torus points in the opposite direction
as the mirror field, FRCs are prone to the tilting instability, in which the torus rotates by 180o,
straightening out the field lines and allowing the toroidal plasma to escape.

The greatest difficulty for FRCs is creating the current ring. In the original Astron FRC design
[2, 3], a relativistic electron beam was injected and trapped in the mirror to form a current ring,
called the E-layer. Severe problems with E-layer formation, radiation losses from the E-layer,
and stability necessitated a new approach. In newer FRC designs, the current ring is created by
applying a strong rotating magnetic field that drags plasma electrons around the circumference of
the plasma. Unfortunately, the superposition of this strong applied magnetic field generally makes
the plasma-current-created field lines open up and release particles from the torus. Furthermore,
since plasmas tend to screen out applied magnetic fields, the rotating field cannot penetrate very
deeply, so FRCs cannot be scaled up to large diameters and hence large fusion power levels. In
a dipole FRC, the ring is actually a current-carrying ring of superconducting material levitated
within the plasma. Because the levitation is very tricky and superconductors revert to normal
conductors when exposed to high temperatures and radiation, dipole reactors face several unique
difficulties. Multipole reactors, which use several levitated superconducting rings to favorably
modify the magnetic fields inside the plasma, would multiply these difficulties.

Another problem is the tilting instability. The magnetic field through the FRC ring points in
the opposite direction as the externally created magnetic mirror field [Fig. 33(b)]. Like a weather
vane pointing the wrong way in the wind, the FRC ring desperately wants to rotate by 180o [Fig.
33(c)]. Since this would open up the self-created FRC magnetic field lines and release the toroidal
plasma, it cannot be permitted. Keeping the FRC torus balanced and pointing in the right direction
requires active feedback stabilization, for example by hitting the torus with waves or neutral particle
beams from one side or another as required. A different way to view this problem is that whereas
tokamaks, stellarators, and RFPs have hardware on the central axis of the toroidal plasma that
physically prevents the torus from flipping over, FRCs do not and so are prone to flipping.
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7.3 Engineering Considerations

Even if the plasma physics cooperates, making a practical fusion reactor still involves many engi-
neering challenges. For example, if tritium is used as fuel, it must be replenished by surrounding
the reactor with a lithium-6-containing blanket that undergoes reaction (60) when struck by fusion
neutrons. New tritium that is bred in the blanket must be chemically extracted.

Fusion energy deposited as heat in the blanket must be converted to electrical power output via
a gas turbine or similar method. Alternatively, direct electric conversion has been proposed for
reactions such as (58) that impart most of the fusion energy to charged particles. Unfortunately,
a plasma confinement magnetic field that lets ∼ 3 − 14 MeV charged fusion products escape to
reach a direct converter would generally also allow an intolerable fraction of ∼ 50−100 keV plasma
particles to escape. Moreover, electric grids at voltages of ∼ 2− 14 MV that could receive most of
the energy from the fusion products usually short out due to unpreventable electrical arcing at such
high voltages. Folks have proposed other direct converters, such as a modified linear accelerator
(Section 8.1) in which charged fusion products impart their energy to an electromagnetic wave, but
these converters are still a long way from becoming real.

Fresh fuel must be injected across the magnetic field lines as neutral particle beams or pellets.
Particles that escape from the confining magnetic field or are ablated off the first wall need to
be scooped up by a magnetic divertor, a special field near the physical first wall surrounding the
plasma. Valuable fuel ions like tritium may need to be purified from this renegade population and
reinjected into the plasma.

Methods must be provided for heating the plasma to fusion temperatures T . Ohmic heating,
using the I2R power dissipated by driving a current I through a plasma of resistance R, is the
most common technique for initially heating a plasma. However, electron runaway and plasma
resistance that decreases like T−3/2 prevent Ohmic heating from exceeding T ∼ 1 keV. To reach
the higher temperatures necessary for fusion, one must then use other heating methods, such as
adiabatic compression of the plasma with the magnetic fields [Eq. (134)], electromagnetic wave
heating, or injection of neutral or charged particle beams.

Inner reactor components such as the first wall surrounding the plasma would be exposed to very
large fluxes of neutrons, charged particles, electromagnetic radiation, and heat. The wall material
must withstand this bombardment without sputtering many of its atoms into the plasma or being
structurally degraded. Realistically the wall will probably need to be periodically replaced, so the
wall material must not be activated by the fusion neutrons to form long-lived radioactive waste.

Although superconducting coils would minimize power losses in the magnets, it is very challenging
to maintain superconductors near the plasma in such an environment. The coils must also be
structurally supported against the enormous magnetic forces they create.
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8 Particle Accelerators
Another important application of plasma physics is particle accelerators. This section will examine
some of the main methods of accelerating and focusing charged particle beams.

8.1 Particle Acceleration Methods
All accelerators use an electric field to accelerate charged particles. However, different types of
accelerators produce the electric field in different ways, accelerate particles either continuously or
by a series of impulses, and employ either circular or linear geometries.

Van de Graaff and Cockcroft-Walton accelerators

Van de Graaff and Cockcroft-Walton accelerators are simple, early designs that use very high
voltages to accelerate either electrons or ions. In a Van de Graaff accelerator, friction from sliding
belts builds up electrostatic charge on metal domes, creating high voltages. In contrast, a Cockcroft-
Walton accelerator uses a high-voltage alternating current circuit of such low frequency that the
particles are accelerated to their maximum energy before the direction of the electric field reverses;
since a particle beam can only be accelerated during part of the circuit’s cycle, this method can
only produce pulsed particle beams. Cockcroft-Walton accelerators are often used as a first stage
for much larger accelerators. High-voltage discharges limit the maximum practical energy of Van
de Graaff and Cockcroft-Walton accelerators to ∼ 5− 15 MeV.

Betatron

A betatron is a type of accelerator used for producing high-energy electrons, or beta particles. As
shown in Fig. 34(a), the electrons have momentum p and follow a circular cyclotron orbit of radius

rc =
p

eB(rc)
≈ EeV

3× 108BT
meters for relativistic particles (E ≈ pc) (303)

in a perpendicular magnetic field B(r) that can vary with radial position. Note that the electron
cyclotron radius from Eq. (39) has been rewritten here in terms of the electron momentum.

By varying the magnetic flux passing through the cyclotron orbit, an accelerating electric field E
is induced around the orbit. Using Faraday’s law in integral form, with the line element dl along
the orbit and the area element dA through the orbit, the induced electric field may be found:∮

E dl = −
∮
dB

dt
dA =⇒ 2πrcE = −πr2

c

d 〈B〉
dt

, (304)

in which 〈B〉 is the area-averaged magnetic field passing through the orbit.

The electron momentum changes due to the electric field, which may be rewritten using Eq. (304):
dp

dt
= −eE = e

rc
2

d 〈B〉
dt

. (305)

The electron orbit travels through a toroidal vacuum chamber. To avoid hitting the walls, the
electrons must remain in the same cyclotron orbit as their energy increases. To keep rc constant,
the magnetic field B(rc) at the electron orbit must increase as the electron momentum increases.
Using Eq. (303), this condition on B(rc) may be expressed:

B(rc) =
p

erc
=⇒ dB(rc)

dt
=

1

erc

dp

dt
=

1

2

d 〈B〉
dt

=⇒ 2
dB(rc)

dt
=

d 〈B〉
dt

Betatron equilibrium condition (306)

Thus the average field 〈B〉 inside the orbit must increase twice as fast as the field B(rc) at the
orbit. This is accomplished by shaping the pole pieces [Fig. 34(a)] so that B (and hence its rate
of increase) is larger inside the orbit than at the orbital radius. Betatrons can accelerate electrons
up to ∼ 300 MeV. Relativistic cyclotron radiation losses make higher energies impractical [19].
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Figure 34. Particle accelerators. (a) In a betatron, electrons follow a circular orbit in a
magnetic field. Changing the magnetic flux passing through the orbit induces an accelerating
electric field around the orbit. The increasing magnetic field keeps the orbital radius constant
despite the increasing particle energies. The iron pole pieces are shaped to provide a stronger
magnetic field inside the orbit than at the orbital radius. (b) In a cyclotron, an accelerating
electric field is applied each time the particles pass between two D-shaped electrodes. Particles
are allowed to spiral outward as their energy increases. (c) In a synchrotron, an accelerating
electric field is applied each time the particles cross an electrode gap. Magnetic sections bend
the particle trajectories into a closed orbit. Straight, magnetic-field-free sections are useful for
injecting or extracting particles. By allowing a large orbital radius and adjusting the electric and
magnetic fields as particles are accelerated, energies of > 1 TeV can be obtained. (d) In a linear
accelerator, particles travel down the center of a long, straight tube. There is a traveling or standing
electromagnetic wave in the tube, and a series of irises in the tube makes the wave ricochet back
and forth off the walls instead of passing straight down the tube. The ricocheting slows the waves
longitudinal velocity to match the particle velocity and also makes the wave have an electric field
component in the longitudinal direction, suitable for accelerating the particles.
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Cyclotron

In a cyclotron, shown in Fig. 34(b), particles follow circular orbits in a perpendicular magnetic
field B, as in a betatron. However, instead of being created by magnetic induction, the accelerating
electric field is applied between two “D”-shaped electrode dees that together encompass the orbits.
The particles travel together in a synchronized group, and the applied voltage between the dees
alternates at the cyclotron frequency of the particles,

ωc =
qB

γm
, (307)

where γ = 1/
√

1− v2/c2 is a relativistic factor depending on the particle velocity v. Thus the
electric field always has the right sign to accelerate the particles crossing the gap.

Unlike in a betatron, the perpendicular magnetic field is held constant, and orbiting particles are
allowed to spiral outward as their energy increases. If the particles remain nonrelativistic, γ ≈ 1 and
particles at different energies have the same cyclotron frequency. Therefore, as long as the particles
stay in phase with the alternating electric field, particles with a broad range of energies may be
accelerated simultaneously in a cyclotron. Low-energy particles can be continually injected near
the center (at the right phase of the alternating electric field, of course) and high-energy particles
can be continually removed at the outer edge.

Unfortunately, when particles begin to approach relativistic energies, γ increases and the high-
energy particles’ cyclotron frequency is no longer in tune with the alternating electric field. This
limits the maximum particle energy to ∼ 30 MeV for protons. The corresponding limit for electrons
is ∼ 15 keV due to their much smaller rest mass, so cyclotrons are generally used only for ions.

To achieve higher energies, one can accelerate batches of ions all having approximately the same
energy. As a batch is accelerated and its energy becomes relativistic, the frequency of the al-
ternating electric field is adjusted to remain tuned to the current cyclotron frequency of the ion
batch. The maximum energy of such a synchrocyclotron is then limited only by the practical
difficulty of building a magnet that covers the entire area from the center out to the cyclotron
radius corresponding to the maximum ion energy. In practice, this limit is ∼ 700 MeV for protons.

Synchrotron

In a synchrotron [Fig. 34(c)], as in a synchrocyclotron, particles are accelerated in monoenergetic
batches. Moreover, particles are accelerated by voltage applied across one or more gaps between
electrodes encompassing part of the particle orbit; the frequency and phase of the applied voltage
is synchronized to coincide with the arrival of the particle batch at each gap, and that frequency
can be adjusted as the particles gain energy, thereby compensating for relativistic effects.

However, the magnetic field in a synchrotron increases as the particles gain energy, so the particle
orbit maintains a fixed cyclotron radius instead of spiraling outward as in a synchrocyclotron.
Therefore, one can use a series of small magnets along the fixed particle orbit instead of one giant
magnet that covers the whole orbit. Being limited by neither relativistic effects nor magnet size,
synchrotrons can accelerate protons to energies of over 1 TeV (1012 eV) and are used for the
ultra-high-energy accelerators at Fermilab and CERN. Synchrotrons can also accelerate electrons,
although cyclotron radiation losses become prohibitive at electron energies greater than ∼ 10 GeV.

From Eq. (303), a synchrotron with 1 TeV particles and a 5 T magnetic field must have a radius
of almost 700 m, so the largest synchrotrons hog a lot of real estate. As shown in Fig. 34(c),
synchrotrons are actually even larger because they usually also contain some straight, magnetic-
field-free regions in which particles can be easily injected or extracted. Smaller accelerators are
used to impart moderate energies to particles before they are injected into a synchrotron.
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Linear accelerator

Whereas most other accelerators use a magnetic field to bend particle trajectories into a circle
or spiral, linear accelerators just don’t bother. Linear accelerators still need an electric field to
accelerate the particles, though. In this case, the electric field belongs to an electromagnetic wave
propagating down a long conducting tube through which the particles also pass, as in Fig. 34(d).
Typically the electromagnetic wave is in the microwave frequency range (f > 300 MHz).

The tube has a series of irises that prevent the electromagnetic wave from traveling straight down
the tube, forcing it instead to ricochet back and forth off the tube’s walls in order to fit through the
central hole in each iris. The particle beam is kept focused to pass through the irises. The irises
serve a dual purpose: (1) Since the electromagnetic wave moves at an angle across the tube, its
electric field has a component in the longitudinal direction that can accelerate the particles. (2) The
irises reduce the effective longitudinal velocity of the electromagnetic wave from c to match that of
the particles for efficient acceleration. Further down the accelerator tube where the particles have
a higher velocity, the spacing between the irises increases to adjust the wave velocity accordingly.

A traveling wave linear accelerator continuously accelerates particles that keep pace with the wave
and are timed to experience the accelerating part of the wave’s cycle. Alternatively, waves traveling
in opposite directions can be superimposed to yield a standing electromagnetic wave with strong
oscillating electric fields at fixed, spatially periodic antinodes. Such a standing wave accelerator
gives impulses to particles that arrive at each antinode during the accelerating part of the cycle.

8.2 Particle Beam Focusing and Maintenance

The particles in accelerators and beams must be herded to arrive at the desired place and time.
Phase stability ensures their arrival at the correct time for an accelerating electric field, while be-
tatron oscillations, electrostatic lenses, and magnetic lenses provide spatial focusing. The Brillouin
limit is the maximum unneutralized charged particle density that a magnetic field can maintain.

Phase stability

In many accelerators, the electric field oscillates with time. It is vital for the particles to encounter
the electric field during the correct part of its oscillation in order to be accelerated instead of
decelerated. Keeping all the particles in sync with the electric field is called phase stability.

Figure 35(a) shows the force imparted to particles that encounter different phases φ of the electric
field’s cycle. A particle that encounters one of the equilibrium points φ = 0 or φ = π of the cycle
feels no accelerating or decelerating force. Synchronous particles have a velocity such that they
always encounter the same phase of the electric field (the time between encounters equals the period
of the electric field) and can keep that velocity if they are at one of the equilibrium points.

However, the φ = 0 equilibrium is stable, while the φ = π one is unstable. If a particle at φ = 0
slows down for some reason, it will lag behind and encounter an accelerating electric force. This
acceleration will boost the particle until it actually leads a bit in phase. Then it will encounter
a decelerating electric field and slow down again. Therefore, particles near φ = 0 undergo stable
oscillations in phase about the equilibrium point. In contrast, particles near the φ = π equilibrium
that lag behind experience a field that decelerates them further, and particles that get ahead
encounter a field that accelerates them further ahead, so the φ = π equilibrium is unstable.

The natural frequency of phase oscillations about the stable equilibrium point can be derived. As
a simple example, consider a traveling wave linear ion accelerator of moderate energy, so that the
particles are nonrelativistic and are accelerated continuously, not in impulses. The particles and the
electromagnetic wave travel at some velocity, and the particles have a relative longitudinal position
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Figure 35. Phase stability and betatron oscillations. (a) Particles that always arrive when
a time-varying electric field is zero (φ = 0 or π) experience no acceleration and are at equilibrium
points. Particles near φ = 0 that lag behind are accelerated toward the equilibrium point, while
those that get ahead are decelerated toward the equilibrium, so φ = 0 is stable. In contrast, φ = π
is not. (b) Particles in circular accelerators can undergo oscillations in the vertical position or
radius of their orbit. Spatial variations in the magnetic field determine whether the oscillations are
stable or unstable.

∆z or phase φ with respect to a stable equilibrium point in the wave. Denoting the electric field
as Eo sinφ, Newton’s second law for particles of mass m and charge q is

m
d2(∆z)

dt2
= −qEo sinφ ≈ −qEoφ for small φ (308)

If the wave has a period T , angular frequency ωs, and velocity vs (also the velocity of synchronous
particles), the phase and relative position of the particles are related by

φ = 2π
∆z

vsT
=

ωs
vs

∆z (309)

Taking the second time derivative of Eq. (309) and using Eq. (308) yields

d2φ

dt2
=

ωs
vs

d2(∆z)

dt2
= −ωsqEo

vsm
φ (310)

Equation (310) describes simple harmonic oscillations of the phase with angular frequency

ω =

√
ωsqEo
vsm

. (311)

This is the frequency at which nearly synchronous particles oscillate back and forth between lagging
and leading the synchronous particles. Although it was obtained for nonrelativistic, continuously
accelerated particles, similar results can be derived for relativistic particles and/or impulse acceler-
ation [19]. These systems all exhibit similar phase stability, such that nearly synchronous particles
undergo small oscillations in phase about the stable synchronous phase position.

Because synchronous particles experience no electric field, to accelerate particles one must gradually
adjust the frequency/wavelength of the electric field so that the synchronous velocity vs steadily
increases. Particles that have been synchronous suddenly find themselves lagging behind and
experience an accelerating electric field. Conversely, by gradually lowering vs, the kinetic energy of
charged particles (such as fusion products) can be directly converted to electrical energy.
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Betatron Oscillations

Particles in a circular accelerator must be stable with respect to vertical or radial perturbations of
their positions [Fig. 35(b)], so that they oscillate about the equilibrium values z = 0 and r = rc
instead of drifting further from those values. This condition is called weak focusing, and the
oscillations are called betatron oscillations. To find the requirements for weak focusing, assume
that the vertical magnetic field Bz varies with radial position according to a field index n:

Bz = Bo

(
r

rc

)−n
(312)

Ampère’s law relates the radial component Br of the magnetic field to the vertical one (neglecting
currents and time-varying electric fields):

∇×B = 0 =⇒ ∂Br
dz

=
∂Bz
dr

(313)

Br may be integrated up from Eq. (313), using Eq. (312) and the boundary condition Br|z=0 = 0:

Br = z
∂Bz
dr

= −n z

rc
Bo (314)

Using Eq. (314) and γ = 1/
√

1− v2/c2, Newton’s second law for the vertical v ×B force is

γm
d2z

dt2
= qvθBr = −n qvθBo

rc
z , or

d2z

dt2
= −nω2

c z Vertical betatron oscillations (315)

where the cyclotron frequency ωc ≡ qB/γm = vθ/rc has been used. Equation (315) describes
small-amplitude, simple harmonic oscillations at a natural angular frequency

√
n ωc about the

equilibrium orbital plane z = 0. If the field index n is negative, this frequency becomes imaginary
and the perturbation in vertical position will grow. Thus n > 0 is required for vertical stability. In
physical terms, if n < 0, Br will point the wrong way and the Lorentz force Br × vz will accelerate
errant particles further away from z = 0 instead of returning them toward z = 0.

Small radial oscillations may be examined using x ≡ r − rc and a Taylor expansion for Bz,

Bz ≈ Bo +
∂Bz
dr

∣∣∣∣
rc

x = Bo

(
1− n x

rc

)
. (316)

Newton’s second law for the centrifugal and v ×B forces in the radial direction is

γm
d2r

dt2
= γm

v2
θ

r
− qvθBz (317)

Using Eq. (316) and 1
1+x/rc

≈ 1− x
rc

for x/rc � 1, Eq. (317) may be rewritten in terms of x:

d2x

dt2
=

v2
θ

(x+ rc)
− qvθBz

γm
≈ v2

θ

rc

(
1− x

rc

)
− qvθBo

γm

(
1− n x

rc

)
(318)

≈ −(1− n)ω2
c x Radial betatron oscillations (319)

The lowest-order terms in Eq. (318) cancelled each other, as expected from the definition of
cyclotron motion. Equation (319) describes oscillations in radius about the equilibrium value rc at
an angular frequency

√
1− n ωc. The condition n < 1 is required for this frequency to be real and

radial oscillations to be stable. Physically, if n > 1, Bz falls off too quickly with increasing radius;
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a particle that wanders out to a larger radius would encounter a much weaker Bz and hence have a
much larger cyclotron orbital radius, reinforcing the perturbation. Similarly, a particle that moves
to a smaller radius would find a much stronger Bz and acquire an even smaller cyclotron radius.

Combining the requirements for vertical and radial stability yields

0 < n < 1 For stability against vertical and radial betatron oscillations (320)

Particle beams can be cooled to reduce transverse momentum such as underlies betatron oscillations
or to reduce the spread of energies in a packet of particles [19]. Cyclotron radiation is strongly
dependent on particle energy, so it decelerates faster particles much more and reduces the spread
in electron beams. While ion beams do not radiate enough to use this method, they can be cooled
by temporarily adding electrons to the beam, letting the electrons soak up excess energy from the
ions, and then removing the electrons. In stochastic cooling, one continually monitors the particle
beam distribution and uses applied fields to manipulate it as desired, much like Maxwell’s demon.

Electrostatic lenses
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Figure 36. Electrostatic immersion lens. A voltage difference is applied between two con-
ducting tubes, creating an electric field in the gap between the tubes. Charged particles passing
from one tube to the other are focused (a) if the electric field is accelerating and also (b) if the
field is decelerating.

Electric fields can be used as a lens to focus beams of charged particles. Figure 36 shows a common
type, an electrostatic immersion lens. Two conducting tubes are separated by a gap; a voltage
is applied across the gap, and charged particles are focused as they travel from the first tube into
the second. Electric field lines that span the gap curve toward the interior of the tubes, and the
direction of the electric field depends on the sign of the applied voltage. If particles maintained the
same radial position r and longitudinal velocity vz, the radial component of the electric field near
the end of the gap would exactly negate the effect of the radial electric field near the beginning
of the gap on the charged particles, and there would be no lens effects. However, focusing arises
because r and vz change as a particle crosses the gap.

If the electric field accelerates particles crossing the gap, the curved field lines will deflect particles
inward near the beginning of the gap and outward near the end. Because the particles near the end
of the gap have a smaller r and larger vz than those near the beginning, the final outward deflection
will be smaller than the initial inward deflection. Thus an accelerating gap focuses particles.

If the electric field at the gap decelerates particles, the field lines will deflect particles outward near
the beginning and inward near the end of the gap. Particles near the end of the gap have a larger r
and smaller vz, making the final inward deflection larger, so decelerating gaps also focus particles.
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Because of spatial variations in the electric field and particle trajectories, the focal length of an
electrostatic immersion lens must be calculated numerically [19]. Similar focusing effects also occur
when particles cross gaps with applied electric fields in particle accelerators.

Magnetic lenses

Magnetic fields can also be used as a lens for charged particles. The most common type is a
magnetic quadrupole lens, illustrated in Fig. 37(a). Particles pass through a tube in the z
direction, shown perpendicular to the page. Four current-carrying coils are evenly spaced around
the tube, creating a magnetic field that enters through two opposite coils and leaves through the
other two coils. As illustrated in Figs. 37(a) and (b), the quadrupole creates a magnetic field within
the tube with a Bx component proportional to y and a By component proportional to x,

Bx = Bo
y

a
By = Bo

x

a
(321)

where Bo is a characteristic field strength and a is the characteristic length over which B varies.
This produces v ×B forces on particles passing through the lens with velocity vz in the z direction:

Fx = −qvzBy = −qvzBo
x

a
(322)

Fy = +qvzBx = +qvzBo
y

a
(323)
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Figure 37. Magnetic quadrupole lens. (a) A particle beam travels perpendicular to the page,
and the quadrupole field is created by four coils evenly spaced around the beam. The field lines
enter through two opposite coils and leave through the other two. (b) The magnetic quadrupole
field has a component Bx that is proportional to y and a component By that is proportional to
x, where the axes are the same as those in (a). (c) In this side view, the magnetic quadrupole
lens is illustrated schematically as an optical lens of thickness L. A beam with parallel particle
trajectories in the z direction is brought to a focus with respect to the x direction at a focal length
fx beyond the lens.

Equation (322) indicates that a particle that has some position x > 0 and is moving in the z
direction experiences a magnetic force that moves the particle toward x = 0, so the lens focuses
particles in the x direction [Fig. 37(c)]. In contrast, Eq. (322) shows that a particle at some
position y > 0 feels a magnetic force that pushes it even further from y = 0, so the lens defocuses
in the y direction. Gauss’s law prevents the design of a magnetic lens that simultaneously focuses
in both the x and y directions. Nonetheless, two magnetic quadrupole lenses can be used together
to simultaneously focus in both directions, as will be demonstrated shortly.
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To find the focal length f of a lens with forces (322) - (323), Newton’s second law for a particle with
relativistic mass γm is written in terms of the particle’s z position instead of time, dt→ dz/vz:

d2x

dz2
=

1

v2
z

d2x

dt2
=

1

v2
z

Fx
γm

= − qBo
γmvza

x ≡ −k2x k ≡
√

qBo
γmvza

(324)

d2y

dz2
= +

qBo
γmvza

y ≡ +k2y (325)

The force of the magnetic lens extends over some effective lens length L in the z direction. Assuming
a thin lens, L� f , greatly simplifies the math, since then the x and y positions of a particle (and
hence the forces Fx and Fy) remain approximately constant while the particle is passing through
the lens, 0 < z < L. For this simple case, Eq. (324) may be integrated over the lens length,

dx

dz

∣∣∣∣
z=L

− dx

dz

∣∣∣∣
z=0

= −k2Lx (326)

If a particle at x > 0 has a trajectory slope dx/dz|z=0 = 0 before the lens, as shown in Fig. 37(c),
Eq. (326) indicates that its trajectory slope after the lens will be

dx

dz

∣∣∣∣
z=L

≡ −∆x

∆z
= −k2Lx (327)

From Eq. (327) and Fig. 37(c), the particle will cross the x axis (∆x = x) after traveling a distance
∆z = 1/(k2L) beyond the lens. Thus the focal length fx for focusing in the x direction is

fx = +
1

k2L
(328)

The focal length in the y direction is similar but negative because of the defocusing:

fy = − 1

k2L
(329)

Now consider a doublet of two successive quadrupole lenses (lens 1 and lens 2), such that:

• Lens 1 focuses in the x direction (fx1 > 0) and defocuses in the y direction (fy1 < 0).

• Lens 2 defocuses in the x direction (fx2 < 0) and focuses in the y direction (fy2 > 0).

Using the formula from optics for successive thin lenses separated by a distance d, and assuming
fx2 = −fx1, the net focal length fx net in the x direction for the doublet is

1

fx net
=

1

fx1
+

1

fx2
− d

fx1fx2
, or

fx net = +
f2
x1

d
(330)

Therefore, the net effect of one lens that focuses and one lens that defocuses in the x direction is
still focusing in the x direction. Likewise, the lenses have a net focusing effect in the y direction.

Magnetic quadrupole lenses are often thick lenses, L ∼ f , necessitating more complicated versions
of Eqs. (328)-(330). Nonetheless, the basic principles which have been illustrated here still apply.

Accelerators such as synchrotrons commonly use many successive magnetic lenses to maintain a
tightly focused beam. This strategy is called strong focusing, in contrast to the weak focusing
that betatron oscillations naturally cause in circular accelerators.
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Brillouin limit

Unlike fusion plasmas, particle accelerator beams generally contain particles that all have the same
sign of charge. To maintain the beam, the electric repulsion among the charges must be opposed by
an external force, such as that provided by a magnetic field. The maximum density of unneutralized
charged particles that can be confined by a magnetic field is called the Brillouin limit.

To derive the Brillouin limit, consider a cylindrical beam of radius r containing particles of charge
q and mass m, as shown in Fig. 38. The particles are confined by an axial magnetic field, B = Bẑ.
For simplicity, we can assume a uniform density n for the particles. From the Poisson equation,
∇ ·E = qn/εo, the particles’ charge creates an electric field Er at the outer edge of the beam:

Er =
qnr

2εo
. (331)
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Figure 38. Brillouin density limit. Shown is a cross section through a cylindrical plasma in an
axial magnetic field Bz that is perpendicular to the page. All the plasma particles have the same
charge q and relativistic mass γm. A repulsive radial electric field Er or force qEr exists at radius
r within the beam. For particles with angular velocity vθ, there is also an outward centrifugal force
γmv2

θ/r and an inward Lorentz force qvθBz. The Brillouin limit is the maximum plasma density
for which the magnetic Lorentz force can overcome the outward forces and confine the plasma.

Due to cyclotron motion, particles rotate around the beam at a velocity vθ. Particles at the edge of
the beam experience an inward Lorentz force qvθB, outward centrifugal force γmv2

θ/r, and outward
repulsive electrical force qEr. For the beam to be in equilibrium, these forces must balance:

qvθB =
γmv2

θ

r
+ qEr

=
γmv2

θ

r
+
q2nr

2εo
(332)

Writing the angular velocity in terms of the cyclotron frequency vθ = arωc = arqB/γm, where a
is some number, and using Eq. (307) and the relation 1/εo = c2µo, Eq. (332) may be rewritten as

γmc2n = 4(a− a2)
B2

2µo
(333)

Because the r dependence cancels out, this result applies to particles at any radius within the beam.
The righthand side of Eq. (333) has a maximum value of B2/2µo for a = 1/2, or for particles that
rotate at half the cyclotron frequency. Using this fact, Eq. (333) may be simplified to

γmc2n ≤ B2

2µo
or (334)

n ≤ 2.65× 109 mp

γm
B2
T cm−3 Brillouin density limit (335)
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Equation (334) means the energy density of the confined plasma (rest and kinetic energy) cannot
exceed the energy density of the confining magnetic field. Although this was derived for the
geometry in Fig. 38, it applies to unneutralized particles confined by any magnetic field. Equation
(335) shows that for nonrelativistic deuterons without any electrons, even a strong 20 T magnetic
field can only confine a maximum deuteron density of 5 × 1011 cm−3. The fusion power density
varies as n2

i and at this ion density is much too low for a fusion reactor. Therefore, fusion plasmas
need electrons to neutralize the ions’ charge and allow the density to exceed the Brillouin limit.

Accelerators with the highest energies generally collide two particle beams with equal but opposite
momenta so that all of the kinetic energy goes into reactions. Equation (334) limits the beam
densities and hence reaction rates in such systems. Higher reaction rates can be achieved by
colliding a Brillouin-density-limited beam with a stationary solid or liquid target (n ∼ 1023/cm3).
However, conservation of momentum prevents such collisions from using the kinetic energy as
efficiently as beam-beam center-of-mass collisions.
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