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...The intense atom glows
A moment, then is quenched in a most cold repose.

–Percy Bysshe Shelley
Adonais: An Elegy on the Death of John Keats
Stanza XX (1821)

The Germans have in recent times carried out two large-capacity bomb explosions in Thuringia.
The explosions took place in a forest area, under conditions of strictest secrecy. Trees fell at a
distance of 500–600 meters from the center of the explosion. Buildings and fortifications specially
constructed for the tests have been destroyed.

Prisoners of war who were near the epicenter of the explosion died, often without leaving a trace.
Prisoners of war who were in the area beyond the center of the explosion have burns on their
face and body, the strength of which depends on their position in relation to the epicenter of the
explosion. The tests were carried out in a remote deserted area. The regime of secrecy at the
test site was at maximum level. Entrance and exit from the territory are by special pass only. SS
soldiers have surrounded the area of tests and interrogated any person approaching the area.

The bomb, supposedly filled with uranium 235 and weighing approximately two tons, was brought
to the test site on a specially constructed truck. Dewars of liquid oxygen were delivered together
with it. The bomb was permanently guarded by 20 guards with dogs. The bomb explosion was
accompanied by a large explosive wave and high temperature. In addition, a massive radioactive
effect was observed. The bomb is a sphere with a diameter of 130 cm.

–Soviet military intelligence report to Joseph Stalin (March 23, 1945)

Overview

Nuclear physics concerns the behavior of atomic nuclei, which are composed of protons and neutrons
held together by the strong nuclear force. To avoid many-body calculations involving complicated
forces, one can use simplified theoretical models, including the liquid drop model, Fermi gas model,
and shell model. As will be shown, these models correctly describe processes such as radioactive
decay, in which a nucleus emits an alpha, beta, or gamma particle to reach a more stable state. The
models also describe nuclear reactions such as fusion (joining of two nuclei) and fission (splitting
of a nucleus). Methods by which the alpha, beta, gamma, and neutron radiation from nuclei can
be attenuated and detected will be presented. Finally, medical and other applications of radiation
will be discussed.
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1 Nuclear Structure
This section will examine the structure of atomic nuclei [1-4]. After considering the component
particles within nuclei, we will present theoretical models that greatly simplify the interactions of
the large number of particles inside typical nuclei. These models include: (1) the liquid drop model,
which treats the nucleus as a continuous blob of matter, (2) the Fermi gas model, which explains
how like particles within a nucleus avoid being in exactly the same state as each other, and (3) the
shell model, in which protons and neutrons orbit within a nucleus just as electrons orbit around an
atom. These models will be used to analyze nuclear masses, spins, and electromagnetic moments
in this section, as well as nuclear decays and reactions in Sections 2 and 3.

1.1 Nuclear Processes Versus Chemical Processes

Whereas chemical reactions are due to rearrangement of electrons in atomic orbitals, nuclear decays
and reactions are due to rearrangement of nucleons (protons and neutrons) in the nucleus. The
difference in size between atomic electron orbits and nucleon spacing in the nucleus has a profound
effect on the energies involved in chemical and nuclear processes (Fig. 1). Electron orbits are
typically measured in units of Angstroms, 1 A = 10−10 m. Nuclear sizes are typically measured in
units of fermis or femtometers, 1 fm = 10−15 m, roughly the diameter of a proton or neutron.

~1 fm =  
10-15 m 
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Figure 1. Size matters. The nucleus is ∼ 105 smaller than atomic electron orbits, so nucleons
(protons and neutrons) have ∼ 105 more energy than electrons.

Energies in nuclear physics and related fields are often measured in electron volts (eV), where 1 eV
= 1.602 × 10−19 J, as well as multiples such as kilo-electron volts (keV) and mega-electron volts
(MeV). Temperatures T are frequently converted to an equivalent thermal energy kBT in electron
volts, where kB = 1.3807× 10−23 J/oK = 8.618× 10−5 eV/oK is the Boltzmann constant.

The effect of size on reaction energies may be estimated from Coulomb’s law, in which the attractive
or repulsion electrostatic potential energy between two particles is inversely proportional to the
separation r between those particles:
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E ∼ e2

4πε0r
=

14.4 eV

r [in A]
(1)

Enucl

Echem
∼ ratom

rnucl
∼ 105 (2)

Because nuclei are ∼ 105 smaller than atomic electron orbits, the energies of nuclear processes
Enucl are typically ∼ 105 larger than those of chemical processes Echem. As will be seen, the strong
nuclear force also plays a vital role in nuclear processes, yet this simple estimate is still valid since
the strong force is comparable to the Coulomb force in nuclei.

Alternatively, the effect of size on reaction energies may be estimated from the Heisenberg un-
certainty principle for the uncertainty ∆x in a particle’s position and the uncertainty ∆p in that
particle’s momentum (Nonrelativistic Quantum Physics ?.?):

(∆x) (∆p) ∼ h̄ (3)

where h̄ ≈ 1.055×10−34 J·sec ≈ 6.582×10−16 eV·sec is Planck’s constant. Using the uncertainty
principle, the minimum energy E of a particle depends on the particle’s mass m and the space ∆x
within which the particle is confined:

E ∼ (∆p)2

2m
=

h̄2

2m(∆x)2
(4)

Enucl

Echem
∼ me

mp

(
ratom

rnucl

)2

∼ 106 (5)

Thus both of these simple estimates show that nuclear processes have ∼ 105 − 106 more energy
than chemical chemical processes (energies of MeV vs. eV). This also means that a nuclear particle
has enough energy to break ∼ 105−106 chemical bonds. As a result, radiation from nuclear decays
or reactions can damage hardware components, depending on the particle type and component
material. Similarly, radiation is especially bad for DNA and other biological molecules. These
issues will be addressed in Sections 4 and 6.

1.2 Quarks, Gluons, and Pions, Oh My!

We will now consider in more detail the particles and forces that are involved in atomic nuclei.
Nuclei are composed of protons, which have a positive electric charge e, and neutrons, which have
no net electric charge. Sometimes protons and neutrons are lumped together under the generic
names of nucleons or baryons. Scrutinized more closely, a proton is composed of two up quarks
(electric charge +2

3e) and one down quark (charge −1
3e), whereas a neutron contains two down

quarks and one up quark. These particles experience electromagnetic forces because of their electric
charges.

A second force is particularly important for the particles in nuclei. Quarks interact with each
other via the strong nuclear force, which is mediated by the exchange of gluons (Relativistic
Quantum Field Theory Section 4). This force binds together the three quarks within each proton
and neutron. In addition, it binds together pairs of various types of quarks and antiquarks to form
different mesons, the most common of which are charged or neutral pions (π+, π−, and π0).

The exchange of mesons produces a mutual attraction between nucleons. This attraction is actually
an indirect manifestation of the strong nuclear force. For example, Fig. 2(a) shows two protons
exchanging a neutral pion, revealing all of the quark and gluon interactions involved in that process.
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Figure 2. Strong force between nuclei. (a) The strong force, caused by gluon exchange
(coiled lines) between quarks (lines with arrows), manifests itself indirectly as mesons that bind
nuclei together. Time advances to the right and the vertical direction is spatial separation. (b) The
strong force potential between two nucleons is dominated by single pion exchange for separations
r12 > 2 fm, heavy meson and multiple pion exchange for 1 fm < r12 < 2 fm, and quark-quark
repulsion for r12 < 1 fm.

Throughout this summary, we will ignore these underlying quark-gluon interactions and consider
only the net forces among protons and neutrons. Quantum chromodynamics (QCD), which de-
scribes quark-gluon interactions and is explained in the field theory summary, is so complicated
that it can scarcely be used to calculate practical results even for just two or three quarks. Applying
QCD to all the quarks in a nucleus would be obscenely complicated. As will be shown, our simpler
approach yields sufficiently accurate results. “Pay no attention to that man behind the curtain...”

Just to sound impressive, nuclear physicists sometimes mention isospin [1, 2], a measure of whether
something is more like a proton or like a neutron. Just as a spin-1

2 particle can be in +1
2 or −1

2 spin
states, a nucleon has +1

2 isospin if it is a proton and −1
2 isospin if it is a neutron. Since absorption

of a positive pion changes a neutron into a proton, π+ has +1 isospin. A negative pion effects the
opposite change and thus has -1 isospin, while π0 has 0 isospin. If you simply keep track of electric
charges or quark content, you can ignore isospin without missing any important physical principles.

For a meson of mass mmeson to exist officially, its total energy must at least equal the rest energy
mmesonc

2, where c is the speed of light. The mesons that effectively transmit the strong nuclear
force between nucleons do not have that much energy and are therefore called virtual particles.
From quantum physics, a virtual meson with zero energy can violate the conservation of energy by
an amount ∆E = mmesonc

2 for a duration ∆t given by the other Heisenberg uncertainty principle
between energy and time (Nonrelativistic Quantum Physics ?.?):

(∆E) (∆t) ∼ h̄ =⇒ ∆t ∼ h̄

mmesonc2
. (6)
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Even if the virtual mesons move at nearly the speed of light, during their brief existence they can
only travel a distance

∆x ∼ c∆t ∼ h̄

mmesonc
=

197.3

mmeson, MeV/c2
fm . (7)

In nuclear and particle physics, particle masses are often given in units of MeV/c2 (≈ 1.783×10−30

kg). The numerical factor in Eq. (7) is frequently useful for evaluating results in nuclear physics:

h̄c ≈ 197.3 MeV · fm . (8)

Pions have a mass mπ ∼ 140 MeV/c2, so from Eq. (7) the range of virtual pions is only ∼ 1.4 fm.
Other mesons have higher masses and hence even shorter ranges.

The mass of an isolated proton is mp ≈ 938.28 MeV/c2, while that of an isolated neutron is
mn ≈ 939.57 MeV/c2. As will be shown in Section 1.2, protons and neutrons have slightly smaller
masses when they are inside nuclei. If an extra several hundred MeV of energy is given to a nucleon,
it can be converted into a more massive baryon such as a ∆, or its quarks can be sent into higher-
energy internal orbits. This occurs at much higher energies than the nuclear phenomena that are
covered in this summary; see the relativistic quantum field theory summary for more information.

If mesons were massless, the attractive potential between two nucleons would vary like 1/r12 with
their separation distance r12, just like the electrostatic Coulomb potential (which is mediated by the
exchange of virtual massless photons). However, the number of virtual mesons decreases exponen-
tially with distance, with the decay length found from Eq. (7). Thus the strong nuclear potential
combines a 1/r12 dependence with exponential decay; this is called the Yukawa potential:

V (r12) ∝ 1

r12
exp

(
− mmesonc

h̄
r12

)
. Yukawa potential (9)

As expected, the Yukawa potential reduces to the Coulomb potential for mmeson = 0.

The strong force between two nucleons also depends on the spin orientations of the nucleons, adding
to Eq. (9) a factor involving Pauli spin matrices σ1 and σ2 for the nucleons. Using a constant gπ
and the virtual pion range rπ ≡ h̄/(mπc), the result is the one-pion exchange potential [1-4]:

V (r12) =
g2
π(mπc

2)3

3(mpc2)2h̄2

{
σ1 · σ2 +

[
3(σ1 · r12)(σ2 · r12)

r2
12

− (σ1 · σ2)

](
1 +

3rπ
r

+
3r2
π

r2

)}
e−r12/rπ

r12/rπ
(10)

Moreover, while single-pion exchange dominates the potential for r12 > 2 fm, for 1 fm< r12 < 2 fm
exchanges of multiple pions or of more massive mesons become important. Reaching r12 < 1 fm
requires a great deal of energy to promote some of the nucleons’ quarks to higher energy levels, since
as fermions they do not want to share the same state and location. Figure 2(b) qualitatively shows
these effects. The large number of contributing processes and the complexities of QCD prevent a
more quantitative calculation of the potential. Likewise, it is difficult to directly measure these
virtual-meson effects, although experiments in which real mesons interact with nucleons provide
some relevant data [1]. Fortunately, the nuclear models outlined in the coming sections do not
require a detailed knowledge of the nucleon-nucleon potential to yield useful results.
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The strong nuclear force among protons and neutrons overcomes the enormous electrostatic repul-
sion among the protons and holds a nucleus together (hence the name). However, the strong force
decreases exponentially beyond the virtual meson range ∼ 1 − 2 fm, which is comparable to the
diameter of a nucleon, so nucleons typically only feel much strong force attraction from their near-
est neighbors in a nucleus. Assuming that virtual mesons travel at nearly light speed c = 3× 1023

fm/sec, the typical nuclear interaction time between adjacent nuclei is ∼ 10−23 sec.

The atomic number Z is the number of protons in an atomic nucleus; it is also the number of
electrons orbiting around the nucleus when the atom is neutral. N is the number of neutrons in
the nucleus. The atomic mass A = N + Z is the total number of nucleons in the nucleus.

A particular type of nucleus is generally designated by the form A
ZXN , using the values of Z, A, and

N for the nucleus and the corresponding chemical abbreviation X for that element. For example,
235
92 U143 is uranium with 92 protons, 143 neutrons, and 235 total nucleons. Because Z is uniquely
specified for each element name and the number of neutrons may be obtained from N = A − Z,
the designations are usually shortened to the form AX, such as 235U.

Different nuclei having the same Z, N , or A are sometimes noteworthy. Isotopes are different
nuclei having the same number of protons but different numbers of neutrons. For instance, 235U
and 238U are important isotopes of uranium. Isotones have the same number of neutrons yet
different numbers of protons. As an example, 3H (tritium) and 4He (helium-4) are isotones with
two neutrons each. Isobars have the same A value but different Z and N values. For instance,
140Xe and 140Cs are isobars that can be produced by fission reactions.

The cross-sectional area of a nucleus is important for electromagnetic moments (Section 1.3) and
nuclear reactions (Section 3). The customary unit of area in nuclear physics is the barn (as in
hitting the side of a barn): 1 barn (b) ≡ 10−28 m2 = 100 fm2. Note that the barn unit was chosen
to correspond to the rough area of an average-sized nucleus of diameter ∼ 10 fm.
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1.3 Liquid Drop Model

The liquid drop model ignores individual nucleons and treats the nucleus essentially like a contin-
uous drop of liquid. Although crude, this model accurately describes a variety of nuclear properties,
including nuclear sizes, masses, and stable Z/A ratios (Fig. 3), as well as fission (Section 3.3).

Contributions to Nuclear Binding Energy EB (in MeV) 
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Figure 3. Contributions to the nuclear binding energy. The first term is simply the average
binding energy per nucleon with its nearest neighbors. The second term is a surface-area correction,
since nucleons at the surface of the nucleus have fewer neighbors to contribute to the binding energy.
The third term, Coulomb repulsion among the protons, favors N � Z. The fourth term, the energy
cost of not filling available neutron and proton states to the same level, favors N ≈ Z. The net
result of the third and fourth terms is to favor N ≈ Z for small nuclei and N a bit larger than Z
for large nuclei. The fifth term accounts for the fact that nuclei are the happiest when each nucleon
is part of a pair with opposite spins. Finally, the sixth term is a correction for shell effects that are
not included in the liquid drop model; nuclei are more stable if their neutrons and/or protons have
filled energy shells.
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Assuming a constant density of matter in nuclei, the volume of a nucleus should be proportional to
the number of nucleons A it contains. Noting that the radius of a sphere varies like the cube root
of its volume, and using an experimentally determined constant, the radius of a nucleus is thus

R = 1.2A1/3 fm (11)

The mass of an atom is basically the sum of the masses of its component protons, electrons, and
neutrons. However, the atom has a certain binding energy EB since its particles are happier being
together than apart from each other. Because energy and mass are related by special relativity,
E = mc2, the binding energy lowers the total mass of the atom:

M = (mp +me)Z + mn(A− Z) − EB
c2

(12)

From quantum physics, atomic electrons have a binding energy on the order of several eV per
electron due to their electrostatic attraction to the positive nucleus. This is much smaller than the
nuclear binding energy of several MeV per nucleon and will be ignored here.

The nuclear binding energy arises from protons and neutrons glomming onto each other. If every
pair of nucleons in the nucleus felt a mutual strong-force attraction, the binding energy would
increase like A2 with the number of possible pairs. Yet because the strong force has such a short
range, each nucleon only feels an attractive potential from its nearest neighbors. Each nucleon has
roughly the same number of nearest neighbors regardless of the size of the nucleus, so the strong-
force binding energy is roughly constant per nucleon, or ∝ A for the whole nucleus. Empirically,
the strong-force binding energy of a surrounded nucleon is approximately 16 MeV, giving a total

Estrong force ≈ +16 A MeV (13)

However, this overestimates the binding energy, since nucleons at the surface of the nucleus don’t
have as many neighbors. Therefore we must subtract from the binding energy a correction term
for the surface nucleons. These nucleons still have neighbors further inside the nucleus and around
them on the surface, so we will only lop off ∼ 4 MeV of their binding energy. Assuming that
nucleons are spaced ∼ 2 fm apart, each surface nucleon occupies ∼ 4 fm2 of surface area. The
surface area of a nucleus is 4πR2, with R from Eq. (11), so the net correction is

Esurface ≈ −4 MeV ×
(

No. of surface
nucleons

)
≈ −4 MeV ×

4π
(
1.2A1/3 fm

)2

4 fm2 ≈ −17A2/3 MeV (14)

Because the nuclear volume is proportional to A, the surface area is proportional to A2/3. This
term Esurface is similar to the surface tension of a liquid drop.

Electrostatic repulsion among the protons in the nucleus further decreases the binding energy.
This Coulomb repulsion energy may be estimated from the potential energy of a uniformly charged
sphere with total charge Z (Electromagnetism ?.?) and radius R from Eq. (11):

ECoulomb = − 3

5

(Ze)2

4πεoR
≈ −0.7

Z2

A1/3
MeV (15)

For a finite number of charges Z, there are only Z(Z − 1) pairs of charges to repel each other,
so some authors use Z(Z − 1) instead of Z2 in Eq. (15). However, there is very little difference
between the two factors for nuclei large enough for these calculations to be valid (Z > 7 or so).
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Protons and neutrons are fermions, so no proton can occupy the same state as any other proton in
the nucleus, and no neutron can occupy the same state as any other neutron. As Sections 1.3 and
1.4 will show in more detail, protons successively fill up the lowest possible proton energy states in
the nucleus, and neutrons fill up their own lowest energy states. If there are many more neutrons
than protons, neutrons fill up the possible neutron states all the way to very high energies, while
protons only fill low-energy proton states [Fig. 3 center]. This takes more energy than having
roughly equal numbers of protons and neutrons, such that the filled proton and neutron states
only extend up to moderate energies. The energy cost of having unequal numbers of protons and
neutrons may be included by altering the binding energy by

Esymmetry ≈ −25
(N − Z)2

A
MeV = −25

(A− 2Z)2

A
MeV (16)

This is called the symmetry energy, since it enforces a symmetry between the number of protons
and the number of neutrons. The factor of 1/A is included because a given difference N − Z is
less significant when it represents only a small fraction of the total number of nucleons A. The
numerical constant will be justified in Section 1.3.

Like atomic electrons, nucleons can have spin up or spin down. Identical fermions do not want to be
in exactly the same state while they are at the same location. Two identical fermions with opposite
spins are not in the same state and thus can be closer together than identical fermions that have
the same spin. If the fermions are electrons, being closer together increases Coulomb repulsion, so
atomic electrons prefer to be in different spin states (Hund’s rules, Nonrelativistic Quantum Physics
?.?). Yet if the fermions are two neutrons or two protons, being closer together increases strong
force attraction, so nuclei with the lowest energies have protons in pairs with opposite spins and
neutrons in pairs with opposite spins. This pairing tendency means that nuclei are happier when
Z and N are even than when they are odd. The binding energy increases by a pairing energy
δ (which must be determined from experiments) for even-even nuclei with Z and N even, and
decreases by δ for odd-odd nuclei with Z and N odd. For even-odd nuclei with even Z and odd
N or vice versa, the even and odd effects cancel out and the binding energy need not be modified.

Epairing ≡ δ ≈


34A−3/4 MeV if even-even
0 MeV if even-odd

−34A−3/4 MeV if odd-odd

(17)

Collecting Eqs. (13)-(17), the net nuclear binding energy EB is [Fig. 3]:

EB = Estrong force + Esurface + ECoulomb + Esymmetry + Epairing

≈ 16A MeV − 17A2/3 MeV − 0.7
Z2

A1/3
MeV − 25

(A− 2Z)2

A
MeV

+


34A−3/4 MeV if even-even
0 MeV if even-odd

−34A−3/4 MeV if odd-odd

(18)

EB/A vs. N and Z is graphed in Fig. 4. Equation (18) used in conjuction with Eq. (12) is called
the Weizsäcker semiempirical mass formula. It may be written more compactly as

Mc2 ≈
(

100

A
+

0.7

A1/3

)
Z2 − 101Z + 949A+ 17A2/3 − δ MeV (19)

Because individual-particle effects in the nucleus have been mostly ignored, the Weizsäcker semiem-
pirical mass formula is not valid for nuclei that contain only a few particles, A < 15. It also neglects
shell effects which add ∼ A/20 MeV to EB at certain “magic” values of N and Z [Fig. 3 right
side], as will be discussed in the next section.
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For a given value of A, the most stable element has a value of Z that minimizes the mass M in Eq.
(19). Setting ∂M/∂Z = 0 yields the most stable ratio Z/A:

Z

A
≈ 1

2

1

1 + 7× 10−3A2/3
(20)

From Eq. (20), the most stable light elements have N ≈ Z, due to the symmetry energy Esymmetry.
However, heavy elements have somewhat more neutrons than protons, because of the large Coulomb
repulsion ECoulomb from the protons: Z/A ∼ 0.4 for A ∼ 100 and up. For example, the most
abundant uranium isotope has Z/A = 92/238 ≈ 0.39. Naturally occurring nuclei lie along this
“valley of stability” given by Eq. (20) and shown as a valley in Fig. 4 and a line in Fig. 5(a).
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Figure 4. Binding energy per nucleon and methods of tapping into it. Nuclei lower
on the vertical axis are more stable. Different types of decays and reactions (arrows) move nuclei
lower, releasing energy and forming more stable nuclei, as will be discussed in Sections 2 and 3.

Figure 5(b) plots the binding energy per nucleon EB/A versus A for nuclei along the line from
Eq. (20). By convention this vertical axis is inverted relative to Fig. 4, so that in Fig. 5(b)
higher nuclei are more stable. Note that the curve peaks at around iron, 56Fe. Basically, nuclei are
happiest when they are medium-sized, and they are less happy if they think they are too small or
too large–sort of like people.

Sometimes nuclear masses are given in unified atomic mass units u instead of MeV/c2 or kg.
One u, defined as 1/12 the mass of a 12C atom (electrons and all), is 931.5 MeV/c2. Ignoring
the electron contribution, this is essentially the average mass of a nucleon in 12C, and it may be
compared with the mass ∼ 939 MeV/c2 of a free nucleon.
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Figure 5. Effects of the nuclear binding energy. (a) This line of naturally occurring nuclei
agrees with Eq. (20) and corresponds to the valley in Fig. 4. (b) Binding energy per nucleon in
MeV, plotted along the line from (a) of the most beta-stable nucleus for each mass. This corresponds
to the bottom along the length of the valley in Fig. 4, only plotted upside down (more stable nuclei
are higher).
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1.4 Fermi Gas Model
Whereas the liquid drop model treats the nucleus as a continuum of matter, the Fermi gas model
treats the nucleus as a collection of individual nucleons. This model is particularly useful for
estimating the energy levels in a nucleus and for defining the temperature of a nucleus.

Using N ≈ Z ≈ A/2 and Eq. (11), the density of identical fermions (neutrons or protons) within
the volume 4

3πR
3 of a nucleus is

nfermions =
N or Z

4
3π(1.2 fm)3A

≈ 3

8π(1.2 fm)3
(21)

From statistical physics, in the ground state a gas of fermions fills all available energy levels up to
the Fermi energy EF . Using Eq. (21), the Fermi energy for neutrons or protons in a nucleus is

EF =
h̄2

2m

(
3π2nfermions

)2/3
≈ 30 MeV (22)

The Fermi energy is independent of the size of the nucleus, since Eq. (11) assumes that the density
of nuclear matter remains constant. The Fermi energy is the kinetic energy of the last bound
neutron or proton. From statistical physics, the average kinetic energy per fermion is 3

5EF ≈ 18
MeV. Using the strong force binding energy from Eq. (13), the nuclear potential well depth is

Vo ≈ −16 MeV − 3

5
EF ≈ −34 MeV (23)

By considering unequal numbers of neutrons and protons, the symmetry energy Esym used in Eqs.
(16) and (18) may be calculated. One begins by considering small asymmetries in the neutron and
proton numbers and writing the number of neutrons as

N =
A

2

[
1 +

(N − Z)

A

]
(N − Z)

A
� 1 (24)

Using Eqs. (21) and (22), the Fermi energy of the neutrons is

EFN =
h̄2

2m

[
3π2 N

4
3π(1.2 fm)3A

]2/3

, (25)

and the total energy of all the neutrons is

EN =
3

5
NEF =

h̄2

mn

1

(1.2 fm)2

3

10

(
9π

4A

)2/3

N5/3

≈ h̄2

mn

1

(1.2 fm)2

3

10

(
9π

4A

)2/3 (A
2

)5/3
[
1 +

5

3

(N − Z)

A
+

5

3

2

3

(N − Z)2

A2

]
, (26)

where Eq. (24) and the binomial expansion were used in the last step. The total proton energy EP
is the same as Eq. (26) but with N and Z interchanged.

Esym is the sum of the neutron and proton energies, relative to their values when N = Z = A
2 :

Esym ≡ EN + EP − EN

(
N =

A

2

)
− EP

(
Z =

A

2

)
≈ (h̄c)2

mnc2

1

(1.2 fm)2

1

3

(
9π

8

)2/3 (N − Z)2

A
≈ 22

(N − Z)2

A
MeV (27)

The nuclear potential well shape (Section 1.4) modifies the constant in Eq. (27) from 22 to 25.

As will be shown in the next section, the energy levels of nucleons can be modeled as simple
harmonic oscillator energy levels separated by a spacing h̄ωo. The Fermi gas model can be used to
estimate h̄ωo. Drawing upon quantum physics, the number of identical fermions that can occupy
level N of a three-dimensional harmonic oscillator is

(2 spin states)×
(
N
2 + 1 values of l

)
× (N + 1 values of ml) ≈ N2 for large N (28)
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where the angular momentum of level N can be l = N,N − 1, N − 2, ..., 0 and the z component of
the angular momentum can be ml = l, l − 1, ..., 1, 0,−1, ...,−l.
Accomodating ∼ A/2 identical fermions requires Nmax levels of the harmonic oscillator:

A

2
≈

Nmax∑
N=0

N2 ≈
∫ Nmax

N=0
dN N2 =

1

3
N3
max

=⇒ Nmax ≈ A1/3 (29)

With the assumption that Nmax is large, the sum in Eq. (29) was approximated by an integral.
The energy of the highest level is simply EF , so the spacing between harmonic oscillator levels is

h̄ωo ≈
EF
Nmax

≈ 30 MeV

A1/3
(30)

Using the Sommerfeld approximation from solid state physics, adding an energy E beyond the
ground state of a Fermi gas corresponds to a temperature T of the gas:

E =
π2

4
A

(kBT )2

EF
≡ a(kBT )2 (31)

where the constant a has been defined as

a ≈ π2

4

A

30 MeV
≈ A

12 MeV
(32)

Turning Eq. (31) around, a nucleus excited by an energy E may be said to have a temperature

kBT ≡

√
E

a
=

√
12EMeV

A
MeV (33)

In nuclear physics, it is common to express temperatures in terms of their equivalent energies in
keV or MeV, where 1 keV=1.16× 107 oK.

Differentiating Eq. (31) to obtain dE = 2ak2
BTdT and using Eq. (33), the definition of entropy

from statistical physics yields

S ≡
∫ T

0

dE

T
=

∫ T

0

2ak2
BTdT

T
= 2ak2

BT = 2kB
√
aE , (34)

From Statistical Physics ?.?, the density of energy levels ρ(E) around energy E (when the temper-
ature is T ) is related to the low-energy (T = 0) level density ρ(0) by

ρ(E) = ρ(0) exp

[
S(E)

kB

]
= ρ(0)e2

√
aE (35)

Inverting the level density from Eq. (36), the average spacing D between energy levels is:

D(E) ≈ D(0)e−2
√
aE (36)

Thus the spacing between adjacent energy levels decreases exponentially with increasing energy.
Physically, the more energy there is, the more ways there are in which it might be distributed
among all the nucleons, creating a greater variety of slightly different energy levels.

Equation (36) should only be used as a very rough guide, since it neglects many of the effects
considered in Sections 1.2 and 1.4. Representative parameters are D(0) ∼ 1 MeV and a ∼ 1/MeV
for light nuclei, and D(0) ∼ 0.1 MeV and a ∼ 5/MeV for heavy nuclei. For example, when a
uranium or plutonium nucleus is excited by 6.5 MeV, its average level spacing is

D(E) ∼ 105 eV e−2
√

5 · 6.5 ∼ 1 eV (37)
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1.5 Shell Model

The shell model extends the Fermi gas model by considering additional effects within the nucleus.
It assumes that the nucleons collectively create an attractive strong-force potential well in the
nucleus and that each nucleon orbits within this well, just as atomic electrons orbit within the
electrostatic potential well. Like electrons in an atom, certain numbers of protons and neutrons in
a nucleus form particularly stable closed orbital shells–hence the name of this model.

Just as atomic electrons act like blurry quantum mechanical waves that are spread over the volume
of the atom, protons and neutrons act like waves described by a wavefunction spread over the
nuclear volume. Like atomic electrons (see the nonrelativistic quantum physics summary), the
nucleon wavefunctions are described by a few important quantum numbers:

Number of radial humps: n = 1, 2, 3, ...
Orbital angular momentum: l = 0 [s], 1 [p], 2 [d], 3 [f ], 4 [g], 5 [h], ...
Component of l in z direction: ml = l, l − 1, l − 2, ..., 0, ... − l + 1, −l

 (38)

Angular momentum values l and ml are expressed as multiples of h̄. For nucleons, n stands for
the number of radial humps in the wavefunction. In contrast, the convention for atomic electrons
is that n means the number of radial humps plus l. Thus a nucleon with a certain value of n can
have any value of l, but an electron with n can only have l ≤ n− 1.

A nucleon can have spin s = +1
2 (“up”) or −1

2 (“down”), also in units of h̄. The total angular
momentum is j = l± 1

2 . As j is a magnitude, it cannot be negative, so it is restricted to +1
2 if l = 0.

Nuclear physics borrows the spectroscopic notation used to describe atomic electrons, denoting the
orbit of a nucleon by nlj , where the numerical value of l is indicated by the corresponding letter.
For example, 1d3/2 means n = 1, l = 2, and j = 3/2; thus the spin must be j − l = 3

2 − 2 = −1
2 .

Each orbit with given values of n and l can contain up to 2(2l+ 1) protons and 2(2l+ 1) neutrons,
because there are two available spin states and 2l + 1 possible values of ml.

Since there is virtually no space between nucleons, how can nucleons freely orbit within a nucleus
without continually tripping over each other? A collision would knock nucleons into a new state,
and the lowest available energy states are already occupied by other nucleons. Climbing up to an
unoccupied energy state would require too much energy, so collisions basically are not allowed.

The collective nuclear potential in which nucleons orbit resembles a three-dimensional simple har-
monic oscillator. A harmonic oscillator potential can be written as V (r) = −Vo + 1

2mnucleonω
2
or

2

(Nonrelativistic Quantum ?.?) and produces discrete energy levels for nucleons trapped in it:

E = −Vo + h̄ωo

(
2n + l − 1

2

)
= −Vo + h̄ωo

(
N +

3

2

)
≈ −34 MeV +

30

A1/3

(
N +

3

2

)
MeV , (39)

where N ≡ 2n + l − 2 = 0, 1, 2, 3, ... (40)

Equation (39) used the results of Eqs. (23) and (30). The principal quantum number N was
introduced to express the energy as multiples of h̄ωo above the zero-point energy 3

2 h̄ωo. Many of
the energy levels are degenerate–levels with different n and l but the same net value of N have the
same energy. Figure 6(a) plots the simple harmonic oscillator energy levels, showing the number
of available states in each level and the total number of states up to and including that level.
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Figure 6. Potential well shape and energy levels for (a) simple harmonic oscillator,
(b) realistic nuclear potential, and (c) infinite square well. Indicated for each level are its
quantum numbers nl, its number of available states, and in parenthesis, the number of states up
to and including that level.

By analogy with classical harmonic oscillators, ωo may be regarded as the frequency at which
nucleons oscillate back and forth in the potential. The corresponding period of the oscillations is

τnucleon =
2π

ωo
=

h A1/3

30 MeV
≈ 1.4× 10−22 A1/3 sec Nucleon oscillation time (41)

Actually, the bottom of the nuclear potential well is flatter than the simple harmonic oscillator
potential. To demonstrate the effects of a flat-bottomed potential well, one can model the nucleus
as a three-dimensional spherical square well with radius R = 1.2A1/3 fm and infinitely high walls
[Fig. 6(c) top]. From Nonrelativistic Quantum Physics ?.?, the energy levels of such a well are:

E = −Vo +
h̄2

2mnucleonR2

[
π2
(
n +

l

2

)2

− l(l − 1)

]
(42)

= −34 MeV +
14.4 MeV

A2/3

[
9.87

(
n +

l

2

)2

− l(l − 1)

]
MeV (43)
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Now n and l have distinctly different effects on the energy. This is shown at the bottom of Fig.
6(c), where numbers again indicate the number of states in each level as well as the total number
of states up to and including that level. Thus flattening the bottom of the potential well eliminates
the energy degeneracy found in simple harmonic oscillator levels.

In fact, the depth Vo of the nuclear potential well is finite, not infinite. From the quantum summary,
inside the well the wavefunction oscillates like Ψ ∼ eikr, where k =

√
2m(E − Vo)/h̄. Outside the

well, the wavefunction decays exponentially with distance, Ψ ∼ e−κr, where κ =
√

2m(Vo − E)/h̄.
Ψ and ∂Ψ/∂r must be continuous at the boundary, but in general the exponential decay for r > R
can partially substitute for the outermost downward oscillation of the wavefunction for r < R.

For E � Vo, the walls are essentially infinitely high, so all n humps of the radial wavefunction
must fit within the span 0 < r < R. However, as E increases, the wavefunction begins to leak
outside the well; this allows the wavefuction within the well to “decompress” a bit, lengthening its
wavelength and decreasing its energy. For E just about equal to the well depth, only half of the
last hump of the wavefunction occurs within the well. Since there are only n− 1

2 humps within the
well, the corresponding energy is lowered by substituting n→ n− 1

2 in Eq. (43).

Realistic nuclear potential wells are intermediate between the harmonic oscillator and square well
shapes; they are flat at the bottom and curve upward at the edges [Fig. 6(b) top]. Accordingly,
their energy levels are intermediate between those in Eqs. (39) and (43) [Fig. 6(b) bottom].

Because the strong force is spin-dependent [Eq. (10)], the spin and orbital angular momentum
of a nucleon interact. This interaction energy term modifies the energy levels we have already
found, just as spin-orbit coupling modifies the energy levels of atomic electrons. The spin-orbit
contribution to the level energies depends on the value l·s, which must be calculated in a convoluted
way to obtain the correct answer (see the quantum summary for more information):

j2 = (l + s)2 = l2 + 2l · s + s2

=⇒ l · s =
1

2

[
j2 − l2 − s2

]
=⇒ 〈l · s〉 =

1

2

[
j(j + 1)− l(l + 1)2 − s(s+ 1)2

]
(44)

Using Eq. (44) and an empirical coefficient, the nuclear spin-orbit energy contribution is:

∆E = −13 MeV

A2/3
〈l · s〉 = −6.5 MeV

A2/3
[j(j + 1)− l(l + 1)− s(s+ 1)]

=


−6.5 MeV

A2/3 l for j = l + 1
2

+6.5 MeV
A2/3 (l + 1) for j = l − 1

2

(45)

The effect of the spin-orbit coupling on the nuclear energy levels in shown in Fig. 7(a) and (b).
As shown, it profoundly modifies the groupings of energy levels. In contrast, spin-orbit coupling
represents only a small perturbation to the energy levels of atomic electrons.

In Fig. 7(b), numbers once again indicate the number of available states in each energy level and
the total number of states up to and including that level. Note that levels tend to occur in groups,
with large energy gaps between different groups of levels. Each group of levels is called a shell.
Shells are completely filled, or closed, when the number of neutrons or protons is a magic number:

2, 8, 20, 28, 50, 82, 126, 184, ... Magic numbers (46)
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Figure 7. Nuclear energy levels (a) without and (b) with spin-orbit coupling.

Like atomic electrons, nuclei are happier when they have closed shells: the binding energy has an
extra ∼ 0.05 MeV/nucleon beyond what Eq. (18) predicts when N or Z is a magic number. Even
nuclei within one or two nucleons of a magic number have an increased binding energy (Fig. 8).

The potential well and energy levels outlined thus far describe neutrons very well. However, protons
feel an electrostatic repulsion as well as the strong nuclear force, so they experience a somewhat
different potential well (Fig. 9). As a result, protons have slightly different energy levels, and their
magic numbers are those in (46) plus the extra number 114. As Z increases beyond the largest
value naturally found on earth, Z = 92, nuclei become increasingly unstable to α decay (Section
2.1) and spontaneous fission (Section 3.3). Yet because of the extra binding energy, there may be
an island of stability around Z = 114, so folks keep trying to create such elements.

Nuclei with closed shells are spherical. Most nuclei without closed shells are slightly nonspherical,
either prolate (somewhat cigar-shaped) or oblate (somewhat pancake-shaped). Generally the devi-
ation from sphericity is small and is only significant for the electric quadrupole moment (Section
1.5). However, as Fig. 10 shows, nuclei with 150 < A < 190 or A > 220 are far from magic numbers
of both Z and N and hence are noticably deformed. Since their potential wells lack the spherical
symmetry of the simple shell model, the energy levels in such nuclei must be described by a math-
ematically nasty deformed shell model that includes the asymmetry. Note that nonspherical
nuclei can also have rotational energy levels, whereas spherical nuclei cannot.
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Figure 8. Difference between actual masses and those predicted by the Weizsacher
mass formula (14), due to shell effects.

The deuteron is usually treated as a special case, since it only has one proton and one neutron
instead of many nucleons as generally assumed in the liquid drop and shell models. The nuclear
potential well depth estimated in Eq. (23) was ∼ 34 MeV, yet experiments show that the deuteron
is only weakly bound, with a binding energy of 2.22 MeV. For more insight, one can use a three-
dimensional square well with radius R′ and depth Vo as a simple model for the proton-neutron
potential (Fig. 11). Assuming that the ground state binding energy is very small, EB � Vo, the
wavefunction expands so that only half of its hump is inside the well. One can therefore make the
substitution n→ n− 1

2 = 1
2 in Eq. (43), together with E = −EB and l = 0:

−2.22 MeV = −Vo +
h̄2π2

8mrR′ 2
= −Vo +

103 MeV

R′ 2fm
, (47)

where the reduced mass mr = mpmn(mp + mn) ≈ 469.5 MeV/c2 has been used. For R′ ≈ 2 fm,
one finds Vo ≈ 28 MeV, which is very close to the expected ∼ 34 MeV, especially considering the
approximations used for the well shape, wavefunction, and radius. Note that in these center-of-mass
coordinates, one particle is assumed to remain at the center r = 0, while the other orbits around
it. Thus R′ is the separation between the proton and neutron, or in other words the diameter of
the deuteron. The corresponding actual radius of the deuteron is R = R′/2 ≈ 1 fm.
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(a) (b) 

Figure 9. Nuclear potential wells for (a) neutrons and (b) protons. For the proton well,
Coulomb repulsion adds a barrier at the edge of the well and makes the well a bit less deep.

Figure 10. Plot of Z vs. N, where crosshatched circles show regions of asymmetric
nuclei far from magic numbers. Stable nuclei are shown in black, while unstable but known
nuclei are in grey.
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Figure 11. Deuteron. (a) This simple square well model for the proton-neutron potential shows
the ground state energy near the top of the well and depicts the corresponding wavefunction. The
actual potential resembles Fig. 2(b). (b) The deuteron is prolate, with the proton and neutron
spins parallel.

Energy levels can be measured by exciting nuclei via collisions, then measuring the energies of
gamma rays emitted as the nuclei decay from higher to lower energy levels (Section 2.3).
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1.6 Spin and Other Things That Make You Dizzy
In addition to the energy levels, the shell model can be used to predict the spin, parity, magnetic
moments, and electric moments of nuclei.

Nuclear Spin and Parity

The net spin J of a nucleus is the vector sum of the j values of its component nucleons. (To avoid
confusion, uppercase designates total nuclear values of angular momentum, while lowercase is used
for individual nucleons.) J can be measured by its effects on the nuclear magnetic dipole moment
(this section) and on nuclear reactions (Section 3.1). As mentioned in Section 1.2, neutrons prefer
to be in pairs with opposite spins, as do protons. Thus the ground state of an even-even nucleus
has J = 0; the spins of the individual nucleons cancel each other out. Moreover, the ground-state
spin of an even-odd nucleus is simply the j of the unpaired nucleon. Odd-odd nuclei have one
unpaired proton with spin jp and one unpaired neutron with spin jn; the total nuclear spin in the
ground state could be anywhere in the range |jp − jn| ≤ J ≤ jp+jn but usually obeys the empirical
Nordheim rules [1, 3, 4] (though there are many exceptions, especially among light nuclei):

J =

{
|jp − jn| for sp + sn = jp − lp + jn − ln = 0
|jp − jn| or jp + jn for sp + sn = jp − lp + jn − ln = ±1

Nordheim rules
for odd-odd nuclei

(48)

Parity is an important principle from quantum physics. If a wavefunction changes sign when
the spatial coordinates are reversed (x → −x, y → −y, z → −z), it has odd (-1) parity. If the
wavefunction does not change sign, it has even (+1) parity. As shown in the quantum summary, the
parity P of an orbiting particle depends on the particle’s orbital angular momentum l, P = (−1)l.
Intrinsic particle spin remains the same under coordinate reversal and need not be taken into
account. Orbitals with l = 0 are spherically symmetric and hence have even parity, while orbitals
with increasing angular momentum alternate between odd and even parity. The parity of a nucleus
containing A nucleons is simply the product of the parities of all the nucleons:

P = (−1)ΣAi=1li (49)

Using Eq. (49), even-even nuclei in the ground state have even parity, P = +1, because nucleons
with each value of orbital angular momentum occur in pairs. By extension, the ground-state parity
of an even-odd nucleus is simply the parity of the extra nucleon, and the parity of an odd-odd nucleus
is the product of the parities of the unpaired proton and unpaired neutron. Parity has important
implications for transitions between different nuclear states in radioactive decays (Section 2), and
indeed, such transitions are the best way to evaluate parity predictions.

Examples of spin and parity, written in the commonly used form JP , are:
12C : JP = 0+ Even-even nucleus.
13N : JP = 1

2

+
One 1p1/2 proton outside 12C core.

14N : JP = 1+ One 1p1/2 proton and one 1p1/2 neutron outside 12C core.
16O : JP = 0+ Even-even nucleus.
17O : JP = 5

2

+
One 1d5/2 neutron outside 16O core.

The deuteron is again considered as a special case. Its proton and neutron are both in the lowest
state, l = 0, so the parity is definitely even. However, the proton and neutron spins could either
be parallel, giving J = 1, or antiparallel, giving J = 0. Equation (10) indicates that nucleons are
more attracted to each other when their spins are parallel, so J = 1 has the lowest energy. Thus
the ground state of the deuteron has JP = 1+. In fact, the deuteron has no excited states, since
the ground state is only weakly bound (recall that EB = 2.22 MeV) and all states above that (even
JP = 0+ with spins antiparallel) have too much energy to be bound.
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Magnetic Moments of Nuclei

The interactions of nuclei with magnetic fields are governed by the nuclear magnetic moments. As
there appear to be no magnetic monopoles to be had even for ready money, the lowest-order nuclear
magnetic moment is the dipole moment, which arises from spinning or orbiting electric charges.

The magnetic dipole moment of a nucleus is the sum of the dipole moments of its component
nucleons. As discussed in the nonrelativistic quantum summary, particles with charge e and mass
m have a magnetic moment of order µ ∼ eh̄/2m. With m = me, this quantity is called the Bohr
magneton and is typical of the magnetic moments due to atomic electrons. With m = mp, it is
called the nuclear magneton and is typical of the magnetic moments in nuclei:

µB ≡ eh̄

2me
= 5.79× 10−5 eV

T
Bohr magneton for atomic electrons (50)

µN ≡ eh̄

2mp
= 3.15× 10−8 eV

T
Nuclear magneton for nucleons (51)

Note that the nuclear magneton is smaller than the Bohr magneton by a factor of mp/me = 1836,
so an atom’s nucleus interacts with magnetic fields much more weakly than its electrons do.

As shown in Relativistic Quantum Physics ?.?, isolated nucleons have a magnetic moment µs:

µs = gs s µN gs =

{
+5.59 for protons
−3.83 for neutrons

(52)

Because neutrons (like protons) are composed of charged quarks, they have an intrinsic magnetic
dipole moment even though they have no net charge. Experimentally, it is found that the effective
gs of nucleons in a nucleus is ∼ 0.6 of the values for free nucleons in Eq. (52), due to the effects of
mesons and interactions with other nucleons.

From Nonrelativistic Quantum Physics ?.?, a charged particle with angular momentum l also has
a magnetic dipole moment µl = eh̄l/2m due to its orbital motion. The net electrical neutrality of
neutrons makes their µl zero, but µl is nonzero for protons and in general may be written

µl = gllµN gl =

{
1 for protons
0 for neutrons

(53)

Thus the contribution of each nucleon to the total magnetic dipole moment of a nucleus is:

µ = µl + µs = µN (gll + gss)

= µN [glj + (gs − gl)s] = µNj

[
gl + (gs − gl)

〈j · s〉
j2

]
(54)

In an even-even nucleus, all of the nucleons are in pairs with opposite spins, so their contributions
cancel out and the nucleus has no net magnetic dipole moment. In an even-odd nucleus, the
magnetic dipole moment of the nucleus is simply Eq. (54) evaluated for the unpaired nucleon.

The only part of s that really matters in Eq. (54) is the component that is parallel to j, j · s/j.
This is found via shenanigans similar to Eq. (44):

l2 = (j− s)2 = j2 − 2j · s + s2 =⇒ j · s =
1

2

[
j2 + s2 − l2

]
=⇒ 〈j · s〉

j2
=

j(j + 1) + s(s+ 1)2 − l(l + 1)2

2j(j + 1)
= ± 1

2l + 1
for j = l ± 1

2
(55)
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Inserting Eq. (55) into Eq. (54) yields the magnetic dipole moments of even-odd nuclei (Fig. 12):

µ = µNj

(
gl ±

gs − gl
2l + 1

)
=

{
µN j

(
1± gs−1

2l+1

)
for even N and odd Z with j = l ± 1

2

±µNj gs
2l+1 for even Z and odd N with j = l ± 1

2

Schmidt
estimates

(56)

(a) (b) 

Figure 12. Measured magnetic dipole moments (points) compared with predicted
values (lines) from Eq. (56) for odd-mass nuclei. Nuclei with (a) odd Z and even N or (b)
even Z and odd N.
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Like spin, the net magnetic dipole moment is much more difficult to predict for odd-odd nuclei.

The magnetic dipole moment of an atomic nucleus creates a weak magnetic field that interacts with
that atom’s electrons, leading to the hyperfine splitting of electron energy levels discussed in the
nonrelativistic quantum summary. The dipole moment can also be directly measured via nuclear
magnetic resonance (Section 6.2).

As usual, the deuteron is a special case. Since it has L = 0 and parallel proton and neutron spins,
the deuteron’s magnetic moment should simply be the sum of the proton and neutron moments,
µ = µsp + µsn = 0.8798µN . Experiments indicate a deuteron magnetic moment of µ = 0.8574µN ,
which is close to but perversely not equal to our simple prediction.

To resolve this issue, consider the total orbital angular momentum L and total spin S of the proton
and neutron. The deuteron has net spin J = L + S = 1. However, L can be 0 (s state, with
S = +1: spins parallel) or 2 (d state, with S = −1: spins parallel). L = 1 (p state, with S = 0–
spins antiparallel) would have odd parity and is not consistent with the observed even parity of the
deuteron. If the nuclear attraction between the proton and neutron were a central force [Eq. (9)],
L would have to assume a definite value. Yet because the attraction is actually a noncentral tensor
force [Eq. (10)], different values of the orbital angular momentum get mixed together. In fact, the
deuteron is a quantum superposition consisting mostly of the s state with a little of the d state,
which is why the magnetic moment is nearly but not quite the simple s-state value.

The orbital angular momentum L is divided equally between the proton and neutron. Only the
proton component L/2 contributes to the total magnetic momoment, which may be written as

µdeuteron

µN
=

1

2
S(gsp + gsn) +

1

2
L =

1

2
S(gsp + gsn)J − 1

2
L(gsp + gsn − 1) (57)

The magnetic moment is evaluated parallel to J , so in Eq. (57) one substitutes J → Jz = 1 and

L → Lz =
〈L · J〉

J2
Jz =

J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
Jz =

L(L+ 1)

4
(58)

If the probabilities of being in the s or d states are Ps and Pd, the average value of Eq. (58) is

〈Lz〉 =
〈L(L+ 1)〉

4
=

0(0 + 1)Ps + 2(2 + 1)Pd
4

=
3

2
Pd (59)

Inserting J = 1 and L = 〈Lz〉 = 3
2Pd into Eq. (57) yields

µdeuteron

µN
=

1

2
(gsp + gsn)− 3

4
Pd(gsp + gsn − 1) = 0.8798− 0.5697Pd (60)

Equation (60) gives the observed deuteron magnetic moment if Pd ≈ 0.04, so Ps = 0.96. Since
wavefunction amplitudes are the square roots of the probabilities, the deuteron wavefunction may
be written as a superposition of the s- and d-state wavefunctions:

Ψ ≈
√

0.96 Ψs +
√

0.04 Ψd (61)
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Electric Moments of Nuclei

Electric moments, governing how nuclei interact with electric fields, are also important. The electric
monopole moment is simply the nuclear charge, and the electric dipole moment is zero for nuclei
in stationary states, since charge is not localized to one side of a nucleus. Nuclei in nonstationary
states can have oscillating protons and hence an electric dipole moment–see Section 2.3.

The lowest-order nontrivial electric moment for a ground-state nucleus is thus the electric quadrupole
moment. From the electromagnetism summary, the quadrupole moment Q of an orbiting charge e
averaged over the orbital coordinates

〈
z2
〉

and
〈
r2
〉

is

eQ = e
(
3
〈
z2
〉
−
〈
r2
〉)

. (62)

Now apply this to a proton orbiting in a nucleus. If the nucleus is spherical, as it is for closed
shells,

〈
z2
〉

=
〈
x2
〉

=
〈
y2
〉

= 1
3

〈
z2
〉
, so the electric quadrupole moment is zero. In fact Q = 0 for

any even-even nucleus, since all nucleons are in pairs with opposite spin (J = 0) and their orbital
motion cancels out. Moreover, even a nucleus with J = 1

2 has no quadrupole moment, since such
a nucleus may be regarded an even-even core plus one unpaired nucleon with j = 1

2 , s = 1
2 , and

hence no orbital motion, l = 0.

If a nucleus is very oblate,
〈
z2
〉
�
〈
r2
〉
∼ 1.2A1/3 fm, the quadrupole moment from Eq. (62) is

Q ∼ −
〈
r2
〉
∼ −0.014A2/3 barn (63)

Equation (63) is typical of a nucleus that is starting a new shell, for example with one unpaired
proton orbiting in the x−y plane. An unpaired neutron produces a smaller but nonzero Q; although
the neutron is uncharged, a nonspherical neutron orbit makes the proton orbits deviate slightly from
spherical symmetry, yielding an electric quadrupole moment.

If the nucleus is very prolate,
〈
z2
〉
∼
〈
r2
〉
∼ 1.2A1/3 fm, the quadrupole moment from Eq. (62) is

Q ∼ +2
〈
r2
〉
∼ 0.03A2/3 barn (64)

Equation (64) is typical of a nucleus with an almost-filled shell.

Figure 13 plots the measured electric quadrupole moment versus A for even-odd or odd-even nuclei.
Q can be measured directly for beams of nuclei or indirectly by its small effect on atomic electrons’
energy levels [1]. As expected from Eqs. (63) and (64), the electric quadrupole moment oscillates
from negative to positive as shells fill up. Like spin and the magnetic dipole moment, Q is more
difficult to predict for odd-odd nuclei. Most nuclei only deviate slightly from spherical symmetry,
so actual quadrupole moments can be smaller than the values in Eqs. (63) and (64) for highly
oblate or prolate nuclei. On the other hand, in the regions 150 < A < 190 and A > 220 that are
far from magic numbers (Fig. 10), even the paired core is nonspherical, and the contributions from
many nucleons make Q several times larger than the single-nucleon estimates of Eqs. (63) and (64).

Using Eq. (61), the electric quadrupole moment of the deuteron is

Q =

∫
dVΨ∗

(
3z2 − r2

)
Ψ =

∫
dV

(√
0.96Ψ∗s +

√
0.04Ψ∗d

) (
3z2 − r2

) (√
0.96Ψs +

√
0.04Ψd

)
(65)
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(a) 

(b) 

Figure 13. Measured electric quadrupole moments (points) compared with predicted
values (lines) from Eqs. (63) and (64) for nuclei with (a) odd Z and even N or (b)
even Z and odd N .

In Eq. (65), the purely s-state term containing Ψ∗sΨs is spherically symmetric and thus does not
contribute to the quadrupole moment. The purely d-state term containing 0.04Ψ∗dΨd only makes a
small contribution to the quadrupole moment due to its small numerical coefficient. The dominant
contribution is from the cross-term, which may be estimated as

Q =

∫
dVΨ∗s

(
3z2 − r2

)
Ψd +

∫
dVΨ∗d

(
3z2 − r2

)
Ψs ∼ 2

√
0.96R2

√
0.04 = 0.0039R2

fm barn (66)

Choosing R ≈ 1 fm gives Q ∼ 0.0039 barn. This is very close to the measured value of 0.00288
barn, especially considering the crude approximations made in evaluating the integrals in Eq. (66).
Note that the measured electric quadrupole moment confirms that the deuteron has a small but
nonzero amount of the d state. If the deuteron were purely in the s state, Q would be zero.

The tensor force makes the proton and neutron spins align along the major axis of the deuteron
[Fig. 11(b)]. Of course, the neutron and proton wavefunctions are blurred out so that the proton
is equally likely to be at each end, so the deuteron has no permanent electric dipole moment.
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2 Nuclear Decay

In nuclear decays, nuclei spontaneously emit particles (Fig. 14). Decays are classified by what
particles are emitted. This section will consider decays by emission of α particles (helium-4 nuclei),
β particles (electrons or positrons), and γ rays (high-energy photons) [1-4]. Spontaneous decay
of large nuclei by fission into two smaller nuclei will be considered along with induced fission in
Section 3.2.
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Figure 14. Radioactive decay. (a) A simple model of radioactive decay is that an energetic
particle is rattling around inside the potential energy well of a nucleus. The particle has a small but
nonzero probability of escaping each time it reaches the outer wall of the nucleus. The probability
of escape each time is independent of the number of previous escape attempts. (b) The exponential
decay half-life τ1/2 is the time required for half of the nuclei in a sample to decay, or to release
their trapped energetic particle. After one half-life, 1/2 of the initial nuclei have decayed; after two
half-lives, 3/4 of the of the initial nuclei have decayed; and so forth.

2.1 Alpha Decay

As Section 1.3 showed, medium-sized nuclei are happier (their nucleons are more tightly bound)
than large nuclei. Emitting an α particle is a favorite way for large nuclei to lose weight and feel
better about themselves (Fig. 15). The excess binding energy becomes particle kinetic energy;
neglecting recoil of the nucleus, which is much more massive than the α particle, the α particle has
energy

Eα = [M(A,Z)−M(A− 4, Z − 2)−mα]c2 (67)
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Figure 15. Alpha decay. (a) Potential energy V of an alpha particle vs. its distance r from a
nucleus. (b) Energy Eα of the emitted alpha particle vs. the decay half life τ1/2.

Equation (67) may be evaluated using the α particle rest mass mαc
2 = 3727.4 MeV and Eq. (19).

The results fall into different categories depending on the number of initial nucleons A:

A < 150 =⇒ Eα < 0 MeV Stable against α decay (68)

150 < A < 200 =⇒ 0 MeV < Eα < 4 MeV Unstable but τ1/2 > 5 billion years (69)

200 < A < 260 =⇒ 4 MeV < Eα < 9 MeV 1 µsec < τ1/2 < 5 billion years (70)

260 < A =⇒ 9 MeV < Eα Very unstable–τ1/2 too short to care (71)

The above values for mass numbers and energies are approximate but illustrative. The half-lives
τ1/2 are the times required for half of the nuclei in a sample to decay; they have been calculated
using the methods below, where it is shown that a relatively small change in Eα corresponds to a
change of many orders of magnitude in the half life. The short half-lives to α decay and spontaneous
fission (Section 3.3) are why the periodic table of the elements ends where it does.

Figure 15(a) shows the potential energy V of an α particle as a function of its distance r from a
nucleus. The α particle is effectively joined with the nucleus and subject to the attractive strong
nuclear force if r is less than r0, the sum of the nuclear radius [Eq. (11)] and the α radius ∼ 1.4
fm: r0 ≈ 1.2A1/3 + 1.4 fm (72)

Typical α-emitting nuclei, or α emitters, have A ∼ 200− 260 [Eq. (70)], so r0 ∼ 9 fm.

Outside the nucleus (r > r0), the α particle feels the repulsive electrostatic potential

V (r) =
Z1Z2e

2

4πεor
=

1.44Z1Z2

rfm
MeV (73)

The value e2/4πεo ≈ 1.44 MeV·fm is often useful in evaluating nuclear physics expressions.

Using the α particle charge Z1 = 2 and typical values Z2 ∼ 90 and r0 ∼ 9 fm, the maximum barrier
height at r = r0 is ∼ 30 MeV, much larger than Eα from Eq. (70). Turning Eq. (73) around, the
potential exceeds the actual α energy until the particle reaches a distance r1 from the nucleus:

r1 =
Z1Z2e

2

4πεoE
=

1.44Z1Z2

EMeV
fm (74)
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For r < r0, the α particle experiences the attractive strong force binding energy of∼ 15 MeV/nucleon
from Eq. (18), which must be subtracted from the ∼ +30 MeV electrostatic potential:

V (r < r0) ≈ 30 MeV − 4× 15 MeV ≈ −30 MeV (75)

Classically an α particle does not have enough energy to travel over the barrier from r = r0 to
r1. Yet thanks to quantum physics, it can tunnel through the barrier anyway. Using the WKB
approximation (Nonrelativistic Quantum Physics ?.?), the transmission probability T that a particle
of mass m and energy E can tunnel through the barrier is

T ≈ exp

{
−2

h̄

∫ r1

r0
dr
√

2m[V (r)− E]

}
= e−2G (76)

The argument of the exponential in Eq. (76) is called the Gamow factor G when the potential
barrier takes the form of Eq. (73) [sometimes the factor of 2 is absorbed into the definition of G]:

2G = 2

√
2m

h̄

∫ r1

r0
dr

√
Z1Z2e2

4πεor
− E = 2

√
2mE

h̄

∫ r1

r0
dr

√
r1

r
− 1

= 2

√
2mE

h̄
r1

[
cos−1

√
r0

r1
−
√
r0

r1

(
1− r0

r1

)]
≈ 2

√
2mE

h̄
r1

[
π

2
− 2

√
r0

r1

]
for r0 � r1

≈ 0.99Z1Z2√
EMeV

√
m

mp
− 3.97

π

√
m

mp

√
Z1Z2

√
1 + 0.83A1/3 , (77)

in which Eq. (77) used Eqs. (72) and (74). Because of the strong dependence on r0, α decay rates
have been used to estimate nuclear radii. For α decay of a nucleus with initial atomic number Z
(Z1 = 2, Z2 = Z − 2, E = Eα, m = mα ≈ 4mp), the Gamow factor is

2G ≈ 3.97(Z − 2)√
Eα, MeV

− 3.57
√
Z − 2

√
1 + 0.83A1/3 (78)

An α particle rattling around inside the potential barrier has a probability T = e−2G of escaping
each time it contacts the barrier. The frequency fα of times that the α particle hits the barrier may
be estimated from the particle’s velocity v inside the nucleus and the diameter 2R of the nucleus:

fα = v
1

2R
=

√
2(Eα + 30 MeV)

mα

1

2 · 1.2A1/3 fm
= 2.89× 1021

√
Eα, MeV + 30 MeV

A1/3
sec−1 (79)

Thus the typical timescale for nucleons rattling around inside a nucleus is τnucleon ∼ 4× 10−22 sec.

α decay also depends on the probability Pα that two neutrons and two protons inside a nucleus
will associate to form an α-particle-like entity. For α-emitting nuclei, this probability is Pα ≈ 0.1.
The exponential decay rate 1/τ of a nucleus due to α decay is simply:

1

τα
=

(
Probability of
α in nucleus

)(
Frequency with which α

hits potential barrier

)(
Probability that α

tunnels through barrier

)
= Pαfαe

−2G (80)

The half-life is related to the exponential decay time from Eq. (80):

τ1/2, α = ln 2 τα = 0.693τα =
0.693

Pαfαe−2G

≈ 2.4× 10−21 A1/3√
Eα, MeV + 30 MeV

exp

[
+

3.97(Z − 2)√
Eα, MeV

− 3.57
√
Z − 2

√
1 + 0.83A1/3

]
sec (81)
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Equation (81) is a form of the Geiger-Nuttall law relating the decay time of the nucleus to the
energy of the α particle that is produced. Sometimes the distance that the α particle can travel
through air is given instead of the α energy. Figure 15(b) shows that Eq. (81) agrees fairly well
with experimental data. More precise calculations take into account the angular momentum l,
which adds a centrifugal force term to the potential barrier when l 6= 0 [1, 3]. They also consider
nonspherical nuclei, in which α particles are most likely to escape from nuclear surface areas that
are further from the center of the nucleus and hence where the Coulomb barrier is weaker.

Particles larger than α particles are generally not emitted by nuclei, because their larger mass
drastically reduces the tunneling probability. (An exception is fission of certain large nuclei whose
structural and energetic properties facilitate tunneling, as will be shown in Section 3.3) Moreover,
the nucleons in α particles are tightly bound, so it is much more energetically preferable to emit
an α particle than a proton or neutron or a less strongly bound small nucleus such as a deuteron.

2.2 Beta Decay

In beta decay, a neutron within a nucleus changes into a proton, or vice versa, emitting an
energetic electron or positron (a beta particle) and an electron (anti)neutrino in the process [Fig.
16(a) and (b)]:

n −→ p+ + e− + νe (82)

p+ −→ n + e+ + νe (83)

Thus beta decay keeps A constant but changes Z (and hence N). For constant A, the nuclear rest
energy plotted versus Z is a parabola [Eq. (19), Fig. 16(c)]. Nuclei that are not at the bottom
of the parabola undergo successive beta decays, adding one to their Z value and subtracting one
from their N value (or vice versa) during each decay, until they reach the bottom of the parabola.

Actually, the pairing energy offset δ in Eq. (19) can assume any of three values, so there are three
parabolas, the lowest one for even-even nuclei, a higher one for even-odd nuclei, and the highest
one for odd-odd nuclei [Fig. 16(c) and (d)]. Odd-A nuclei remain on the middle even-odd/odd-even
parabola (c) as they decay. In contrast, even-A nuclei alternate between the even-even and odd-odd
parabolas (d) as they decay. As a result, there are very few stable odd-odd nuclei (only five light
elements), since they can generally reach lower energy states by decaying to the even-even parabola.
Typically only the single lowest energy state on the even-odd parabola is stable. Because of the
exceptionally low energy of the even-even parabola, often the two lowest states are both stable.

The Feynman diagrams in Fig. 16(b) schematically illustrate beta decay. A neutron can turn
into a proton, in the process emitting a virtual W weak nuclear force decay particle, which splits
into a real electron and electron antineutrino. Turning things around, a proton can split into a
neutron, positron, and neutrino. The quantum amplitude is the same for either process and may
be estimated using the principles from Relativistic Quantum Field Theory 3.1. Each vertex of the
diagram contributes a weak interaction coupling factor gw ≈ 0.66. The amplitude of the virtual
W particle depends on the square of the ratio of the total energy ∆E released in the decay to the
rest energy mwc

2 that would be required to make the W particle real. Because typical beta decay
energies ∆E ∼ 1 MeV are far smaller than mwc

2 ≈ 82 GeV, the chance of producing a virtual W
particle is very small:

|A| ∼ g2
w

(
∆E

mwc2

)2

(84)
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Figure 16. Beta decay. (a) Schematic and (b) Feynman diagrams for beta decay, showing
conversion of a neutron into a proton or vice versa. (c) For odd-even or even-odd nuclei with
constant A, the nuclear rest energy E vs. Z is a parabola. (d) Due to the pairing energy offset δ,
there is a higher parabola for odd-odd nuclei and a lower one for even-even nuclei. (e) Normalized
energy spectrum of emitted beta particles from Eq. (87), with and without the Coulomb correction
function F from Eqs. (88) and (89). (f) The function f(Z ′,∆E) from Eq. (90). (g) Measured ft
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If a transition of energy ∆E is completely free to occur, its rate Γ is limited by the Heisenberg
uncertainty principle, Γ ≡ 1/τ ∼ ∆E/h̄. For beta decay, the transition rate must also include the
probability |A|2 of the transition:

Γ ∼ ∆E

h̄
|A|2 ∼

(
gw
mwc2

)4 (∆E)5

h̄
(85)

Integrations over phase space and particle emission angles introduce factors of ∼ 4π:

Γ ∼ 1

(4π)3

(
gw
mwc2

)4 (∆E)5

h̄
(86)

Relativistic Quantum Field Theory 3.2.2 derives a more accurate expression for beta decay of an
isolated neutron. The weak force coupling constant is more complicated than assumed above. It
includes a Cabibbo factor cos θc ≈ 0.974 and separate coefficients for two types of coupling: vector
(cV ≈ 1) and axial (cA ≈ 1.26). The variation of the decay rate with the emitted electron energy,
dΓ/dEe, is important because it gives the energy spectrum of the beta particles [Fig 16(e)]. The
dΓ/dEe expression for decay of an isolated neutron can be extended to beta decay of a nucleon
within a nucleus by including fudge factors, the Fermi amplitude AF to modify vector coupling
(beta particle and neutrino emitted with spins antiparallel) and the Gamow-Teller amplitude
AGT to modify axial coupling (beta and neutrino emitted with spins parallel):

dΓ

dEe
=

cos2 θc
(4π)3h̄

(
gw
mwc2

)4 (
c2
V |AF |

2 + c2
A |AGT |

2
)
F (Z ′, Ee)Ee

√
E2
e −m2

ec
4
(
∆E +mec

2 − Ee
)2

(87)

Equation (87) applies to either electrons or positrons emitted in beta decay. It reduces to the
expression for isolated neutron decay for |AF |2 = 1, |AGT |2 = 3, and ∆E = (mn −mp −me)c

2.

The function F (Z ′, Ee) in Eq. (87) accounts for the effect of the final nuclear charge Z ′ on the
probability of the emitted electron appearing at the nucleus (r = 0):

F (Z ′, Ee) =

∣∣∣∣ ψe(Z
′, r = 0)

ψe(Z ′ = 0, r = 0)

∣∣∣∣2 ≈ Z′e2

2εoh̄v∣∣∣1− exp
(
∓ Z′e2

2εoh̄v

)∣∣∣ (88)

where the approximate answer is a nonrelativistic result given by other authors [1, 3]. (The rela-
tivistic result is much nastier [3, 4].) The ∓ sign is negative for electrons and positive for positrons.
In the limit of low energies or emission velocities v → 0, Eq. (88) becomes

F (Z ′, Ee) ≈


Z′e2

2εoh̄v
for electrons

Z′e2

2εoh̄v
exp

(
− Z′e2

2εoh̄v

)
for positrons

(89)

The Coulomb field of the nucleus is attractive for escaping electrons and steals energy from them,
or equivalently enhances electron emission at low energies, as shown by Eq. (89). In contrast,
the field is repulsive for positrons and accelerates them, or suppresses positron emission at low
energies. By analogy with alpha decay, Eq. (89) can also be viewed as a Gamow tunneling factor
for positrons escaping from the nucleus.

The essence of Eq. (87) integrated over all energies is defined as the Fermi integral f(Z ′,∆E):(
mec

2
)5
f(Z ′,∆E) ≡

∫ ∆E

mec2
dEe F (Z ′, Ee)Ee

√
E2
e −m2

ec
4
(
∆E +mec

2 − Ee
)2

(90)
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The factor (mec
2)5 gives the correct units for the energy factors. For Z ′ = 0, the integral can be

evaluated analytically, defining ε ≡ ∆E/mec
2:

f(Z ′ = 0,∆E) =
√
ε2 − 1

(
1

30
ε4 − 3

20
ε2 − 2

15

)
+

1

4
ε ln

(
ε+

√
ε2 − 1

)
(91)

≈

 0.2155
(

∆E
mec2

− 1
)7/2

for ∆E −mec
2 � mec

2

1
30

(
∆E
mec2

)5
for ∆E � mec

2
(92)

Coulomb effects (Z ′ 6= 0) necessitate numerical evaluation of f(Z ′,∆E) [Fig. 16(f)]. However, they

generally multiply f(0,∆E) by ∼ exp
(

2πZ′

137
c
v

)
for electron emission and ∼ 0.1 − 0.3 for positron

emission with large Z ′.

Using the Fermi integral, the total beta decay rate is

Γ =
cos2 θc
(4π)3

(
gw
mwc2

)4
(
mec

2
)5

h̄
f(Z ′,∆E)

(
c2
V |AF |

2 + c2
A |AGT |

2
)

(93)

=
G2
Fm

5
ec

4

2π3h̄7 f(Z ′,∆E)
(
c2
V |AF |

2 + c2
A |AGT |

2
)
, (94)

where by convention the Fermi coupling constant is defined as

GF ≡ cos2 θ

(
gw
mwc2

)2 (h̄c)3

4
√

2
≈ 8.7× 10−5 MeV · fm3 (95)

As a sanity check, using f(Z ′,∆E) ≈ (∆E/mec
2)5/30, |AF |2 = 1, and |AGT |2 = 3, Eq. (93) agrees

(within a factor of 5) with the crude estimate of Eq. (86):

Γ ≈ 0.2
1

(4π)3

(
gw
mwc2

)4 (∆E)5

h̄
(96)

The half-life for beta decay is

τ1/2 =
ln 2

Γ
=

ln 2 2π3h̄7

G2
Fm

5
ec

4

1

f(Z ′,∆E)

1

c2
V |AF |

2 + c2
A |AGT |

2 (97)

The ft value is the half-life adjusted with the f(Z ′,∆E) dependence removed, so it is only a
function of the Fermi and Gamow-Teller amplitudes:

ft ≡ f(Z ′,∆E)τ1/2 =
ln 2 2π3h̄7

G2
Fm

5
ec

4

1

c2
V |AF |

2 + 3c2
A |AGT |

2 ≈
6140 sec

|AF |2 + 1.59 |AGT |2
(98)

A centrifugal barrier impedes the emission of beta particles and neutrinos with angular momentum
l 6= 0 (just as it does for alpha particles), making beta decays with larger and larger values of
emitted l increasingly unlikely. Or viewed in a different way, a high-energy electron with momentum
p ∼ mec emitted from a typical nuclear radius R ∼ 5 fm has an angular momentum (in units of
h̄) l ∼ p ·R/h̄ ∼ 10−2. Since angular momentum must be quantized, emission of l = 0 is therefore
much more probable than emission of l = 1. This is a direct result of the nucleus being practically
a point source. More mathematically, the beta particle wavefunction may be Taylor-expanded in
terms representing successive values of l = 0, l = 1, l = 2, etc.:

ψe ∼ exp

(
ip · r
h̄

)
≈ 1 +

ip · r
h̄

+
1

2

(
ip · r
h̄

)2

+ ... (99)
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As calculated above, each term is ∼ 10−2 smaller than the previous term. When the wavefunction
is squared to get the probability, each term is ∼ 10−4 smaller. Equations (97) and (98) describe
the most probable case, l = 0. Beta decay with emission of l = 1 has a half-life that is ∼ 104 longer
than that, and each higher value of l introduces an additional factor of ∼ 104.

If the initial and final nucleons are in similar orbits, the squared amplitudes |AF |2 and |AGT |2 are
of order unity [4], as they are for neutron decay. If the initial and final orbits are rather different,
the amplitudes are much smaller, typically increasing the half-life by a factor of ∼ 101 − 104.

Since parity varies like (−1)l, the parity of the nucleus changes during odd-l but not even-l emission.

In Fermi decay, the electron and neutrino have antiparallel spins and hence carry off no net spin,
s = 0. In contrast, they have parallel spins in Gamow-Teller decay and thus carry off s = 1. The
nuclear spin can change by as much as the sum of the emitted l and s values. If l = 0, Fermi decay
cannot change the nuclear spin, ∆J = 0, since the emitted particles have no net spin. Gamow-Teller
decay with l = 0 must change the component mJ of nuclear spin by the one unit carried by the
emitted particles, so ∆J could be -1, 0, or +1. An exception is that Gamow-Teller decay cannot
mediate a transition from one J = 0 nuclear state to another, as mJ = 0 could not change in that
case.

Putting all of this information together, beta decays may be divided into the following categories
based on their ft lifetime [Fig. 16(g)]. Since a nucleus generally decays via the most probable
(fastest) allowed route, these categories may be regarded as selection rules to predict the most
probable type of beta decay for given initial and final nuclear states:

1. Superallowed decays are the fastest, occuring when the emitted l is 0 (thus the nuclear
parity cannot change) and |AF |2 and/or |AGT |2 are of order unity (the initial and final nucleon
states are similar). From Eq. (98), such decays have ft ≈ 3000 sec ∼ 1 hour. The nuclear
spin can change by ∆J = 0 (Fermi or Gamow-Teller modes) or ±1 (Gamow-Teller only).

2. Allowed decays are the next fastest. They have l = 0 but rather different initial and final
nucleon states, so their comparitive half-lives are ft ∼ 104− 107 sec ∼ 1− 100 days. As with
superallowed decays, the nuclear spin changes by ∆J = 0 or ±1.

3. First forbidden decays are not actually forbidden, just less probable. They have an emitted
l = 1 and thus involve a nuclear parity change and ∆J = 0, ±1, or ±2. Their comparative
half-lives are in the range ft ∼ 106−109 sec, depending on how similar or different the initial
and final nucleon states are.

4. Second forbidden decays have l = 2. They do not alter the nuclear parity but change
the nuclear spin by ∆J = ±2 or ±3. (While second forbidden decays with ∆J = 0 or ±1
are theoretically possible, they are overwhelmed by the much faster allowed or superallowed
decays that also satisfy those ∆J and parity conditions.) The comparitive half-lives of second
forbidden decays are in the range ft ∼ 1010 − 1013 sec.

5. Third forbidden decays have l = 3 and ft ∼ 1014 − 1020 sec ∼ 3 × 106 − 3 × 1012 years.
They involve a nuclear parity change and ∆J = ±3 or ±4. (Transitions with a parity change
but smaller ∆J are dominated by first forbidden decays.) There are only four known cases
of third forbidden decay.
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6. Fourth forbidden decays have l = 4 and extraordinarily long comparative half-lives, ft ∼
1023 sec ∼ 3× 1015 years. They involve ∆J = 4 or 5 and no nuclear parity change, and there
are only two known cases.

As an example, beta decay of tritium to helium-3 releases 18.6 keV, or ε = 1 + 18.6/511 ≈ 1.0364.
The initial and final nuclear states are very similar (mirror images with neutrons↔protons) and the
nuclear spin remains J = 1/2, so the decay is superallowed with ft ∼ 3000 sec. Using f(2, 1.0364) ≈
5× 10−6 yields τ1/2 = ft/f ∼ 19 years, relatively close to the actual half-life of 12.3 years.

Instead of emitting a positron, a nucleus undergoing beta decay can sometimes absorb one of the
orbiting atomic electrons, a process called electron capture:

p+ + e− −→ n + νe (100)

Calculations of electron capture are very similar to those of positron-emission beta decay, except the
density of states for a free emitted positron with momentum pe, 4πp2

edpe/h̄
3 ∼ (∆E)3/(h̄c)3, must

be replaced by the density of an atomic electron in orbital shell n at the nucleus, ∼ |ψn(r = 0)|2 ∼(
Z
n

e2

4πεo
me
h̄2

)3
, using atomic electron wavefunctions from the nonrelativistic quantum summary

evaluated at r = 0. Thus the ratio of electron capture to positron emission is

Γcapture

Γe+
≈ numerical

constant
×

(
Z
n

e2

4πεo
me
h̄2

)3

(
∆E
h̄c

)3 ≈ 60π

(
Z

n

e2

4πεoh̄c

mec
2

∆E

)3

≈ 1× 10−5
(

Z

n∆EMeV

)3

,(101)

where the numerical constant 60π comes from more detailed calculations [4]. While Eq. (101) does
not extend down to low transition energies ∆E or include relativistic effects that occur at high Z
[3, 4], it nonetheless illustrates the general behavior of electron capture. Because of the cube of the
fine structure constant αfs ≡ e2/4πεoh̄c ≈ 1/137, electron capture is generally less likely than
positron emission. Due to the factor of 1/n3, n = 1 (also known as 1s or K-shell) electrons are most
likely to be captured, since they orbit closer to the nucleus and have a much higher probability of
entering the nucleus. The Z3 dependence means that electron capture is most significant for heavy
elements. Finally, electron capture is most important for low transition energies ∆E.

The only particle emitted directly in electron capture is a neutrino, which is virtually impossible to
detect. However, X-rays are emitted soon after the decay, when an electron in a higher shell drops
down to replace the captured electron in the lower orbital.

Electron capture is covered by the same selection rule as the corresponding type of positron-
emission beta decay, but a crucial difference is the energies involved. In positron emission, part of
the transition energy ∆E = [M(Z− 1, N + 1)−M(Z,N)]c2 must be converted into the rest energy
mec

2 of the created positron. In contrast, electron capture reactions can consume the rest energy
mec

2 of the captured electron (neglecting the atomic binding energy of that electron), adding it to
the nuclear transition energy. Thus positron emission requires a minimum nuclear transition energy
∆E ≥ mec

2, whereas electron capture reactions can occur even for nuclear transition energies that
are slightly negative, down to almost ∆E ≈ −mec

2.
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2.3 Gamma Decay

In gamma decay, a nucleus in an excited state decays to a lower state, emitting a gamma ray
photon in the process (Fig. 17). This decay process is in contrast to alpha and beta decay, in which
the composition of the nucleus changes during the decay.

Nuclear 
potential 

well 
p+ 

n Ground state 

Excited state Gamma ray 

(a) (b) 
Figure 17. Gamma decay. (a) In gamma decay, one or more nucleons in the nucleus decay from
an excited state to a lower energy state, releasing excess energy as a gamma ray. (b) Comparison
of experimental data with Weisskopf estimates for gamma decay rates. From S. J. Skorka et al.,
Nucl. Data 2, 347 (1966).

Gamma decay rates may be estimated by treating the nucleus as an electric or magnetic multipole
that radiates photons. From Electromagnetism ?.?, the power radiated by an electric or magnetic
multipole of order L (L = 1 for a dipole, 2 for a quadrupole, 3 for an octupole, etc.) is

P (XL) =
2(L+ 1)

L[(2L+ 1)!!]2
c

εo

(
ω

c

)2L+2

[M(XL)]2 (102)

in which X is E for electric or M for magnetic multipoles. The double factorial used in Eq. (102)
is defined as (2L+ 1)!! ≡ 1 ·3 ·5 · ...(2L+ 1). M is the generalized multipole moment; for an electric

dipole, it can be expressed in terms of the more familiar dipole moment d, M(E1) =
√

3
16πd.

Equation (102) can be extended to cover a quantum system like a nucleus by letting the multipole
moment become an operator M̂ evaluated between the wavefunctions of the excited and ground
states of the nucleus, the initial state i and final state f . L then indicates not only the multipole
order but also the angular momentum emitted by the nucleus during the decay. The lifetime of the
excited state is simply the time required for a photon of energy ∆E = h̄ω to be emitted:

Γ(XL) ≡ 1

τ(XL)
=

P (XL)

h̄ω
=

2(L+ 1)

L[(2L+ 1)!!]2
1

εoh̄

(
ω

c

)2L+1 ∣∣∣〈f ∣∣∣M̂(XL)
∣∣∣ i〉∣∣∣2 (103)

The electric multipole operator is M̂ = erLYLM . Assuming that the wavefunction and angular
factors are ∼ 1, the electric multipole moment can be evaluated approximately:〈

f
∣∣∣M̂(EL)

∣∣∣ i〉 =

∫
dΩ
∫ R

0 dr r2 ψf er
LYLM ψi∫

dΩ
∫ R

0 dr r2
∼ 3

L+ 3
eRL (104)
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Inserting Eq. (104) into Eq. (103), the electric multipole decay rate is

Γ(EL) ∼ 2(L+ 1)

L[(2L+ 1)!!]2
e2

εoh̄

(
∆E

h̄c

)2L+1 ( 3

L+ 3

)2

R2L (105)

Using Eq. (11), Eq. (105) gives the Weisskopf estimates for electric multipole decay rates:

Γ(E1) ∼ 1.0× 1014 A2/3 (∆EMeV)3 sec−1 (106)

Γ(E2) ∼ 7.3× 107 A4/3 (∆EMeV)5 sec−1 (107)

Γ(E3) ∼ 34 A2 (∆EMeV)7 sec−1 (108)

Γ(E4) ∼ 1.1× 10−5 A8/3 (∆EMeV)9 sec−1 (109)

The Weisskopf estimates are only ballpark values since they omit nuclear wavefunction and angular
factors, yet they illustrate the functional dependence and relative magnitudes of the decay rates.

Because the electric multipole operator assumed only a single charge, decay rates can be consid-
erably larger if many oscillating nucleons contribute to the process. On the other hand, decay
rates can be significantly smaller than the Weisskopf estimates if the initial and final nuclear wave-
functions do not match up well. Figure 17(b) compares experimental data with the Weisskopf
estimates.

Using the magnetic multipole operator M̂ ≈ (µp− 1
L+1) eh̄

mpc
rL−1YLM and assuming the wavefunction

and angular factors are ∼ 1, the magnetic multipole moment is roughly:

〈
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∣∣∣ i〉 ≈
∫
dΩ
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0 dr r2ψf
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√
10
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eh̄

mpc
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in which the nuclear physicists’ convention of estimating µp − 1
L+1 ∼

√
10 has been used.

From Eqs. (110) and (103), the magnetic multipole decay rate is

Γ(ML) ∼ 10
2(L+ 1)

L[(2L+ 1)!!]2
e2

εoh̄

(
h̄

mpc

)2 (
∆E

h̄c

)2L+1 ( 3

L+ 2

)2

R2L−2 (111)

Using Eq. (11) in Eq. (111), the Weisskopf estimates for magnetic multipole decay rates are:

Γ(M1) ∼ 5.6× 1013 (∆EMeV)3 sec−1 (112)

Γ(M2) ∼ 3.5× 107 A2/3 (∆EMeV)5 sec−1 (113)

Γ(M3) ∼ 16 A4/3 (∆EMeV)7 sec−1 (114)

Γ(M4) ∼ 4.5× 10−6 A2 (∆EMeV)9 sec−1 (115)

As with the electric multipole decay rates, the actual magnetic multipole decay rates can be higher
than the Weisskopf estimates if many nucleons contribute to the process or lower if the initial and
final nuclear wavefunctions are poorly matched.

For multipoles of the same order L, the ratio of the magnetic and electric decay times is:

τ(ML)

τ(EL)
∼ 1

10

(
Rmpc

h̄

)2

∼ 1

10

(
1.2 fm A1/3mpc

h̄

)2

∼ 3A2/3 (116)
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Selection rules indicate which multipole is predominant for a given nuclear transition:

1. The emitted angular momentum L must lie between the difference and the sum of the initial
Ji and final Jf nuclear angular momentum, |Ji − Jf | ≤ L ≤ Ji + Jf , but L cannot be zero
because a photon has an intrinsic spin of 1.

2. If the nuclear state has the same parity before and after the transition, the decay must be
an even electric or odd magnetic multipole transition, in order to keep the product of the
nuclear parity and radiation parity constant.

3. If the nuclear parity changes, the decay must be an odd electric or even magnetic multipole.

4. Using Eqs. (106)-(109) to compare electric multipoles or Eqs. (112)-(115) to compare mag-
netic multipoles, decay of order L+1 is typically 4.5×10−7A2/3(∆EMeV)2 ∼ 105 less probable
than decay of order L for medium or heavy nuclei with ∆E ∼ 1 MeV. Therefore the multipole
emission with the smallest allowed L is generally dominant.

5. For the same L, Eq. (116) shows that EL is typically ∼ 100x more probable than ML for
medium or heavy nuclei. (However, note that Rules 2 and 3 forbid electric and magnetic
multipoles of the same order from competing with each other in the same case.)

6. From Rules 4 and 5, generally τ(E L+1)
τ(ML) = τ(E L+1)

τ(EL)
τ(EL)
τ(ML) ∼ 105 × 10−2 ≈ 1000, so depending

on the details of the nuclear wavefunctions, the E2 decay rate may approach that of M1, E3
may approach M2, and so forth.

7. Similarly, combining Rules 4 and 5 shows that τ(M L+1)
τ(EL) = τ(M L+1)

τ(ML)
τ(ML)
τ(EL) ∼ 105×100 ≈ 107,

so generally M2 cannot compete with E1, M3 cannot compete with E2, etc.

A nucleus can decay from an excited state by emitting a virtual photon instead of a real photon. In
internal conversion, such a virtual photon is absorbed by an electron orbiting the nucleus, with
the net result that the atom emits a high-energy electron instead of a gamma ray. The internal
conversion coefficient αn is the ratio of the decay rate due to internal conversion involving an
atomic electron from the nth shell and the gamma decay rate. The internal conversion coefficient
depends on the probability that an atomic electron will be found within the nucleus, so it has

the same
(
Z
n

e2

4πεoh̄c
mec2

∆E

)3
dependence as the electron capture ratio in Eq. (101). However, the

virtual-photon-to-electron conversion process introduces an extra factor of e2/4πεoh̄c:
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2
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(117)

More detailed calculations [1, 3] show the energy exponent depends on L for electric multipoles
EL:

αn(EL) ≡ Γe, n(EL)

Γγ(EL)
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2

, (118)
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Likewise, the internal conversion coefficient for magnetic multipoles ML is [1, 3]:

αn(ML) ≡ Γe, n(ML)

Γγ(ML)
∼ 1

(137)4

(
Z

n

)3
(

2mec
2

∆E

)L+ 3
2

(119)

The results in Eqs. (118) and (119) are only order-of-magnitude estimates, since they do not
include relativistic effects or details of the wavefunctions. Nonetheless, they reveal important
aspects of internal conversion coefficients. Like the electron capture ratio from Eq. (101), the
internal conversion coefficient is generally quite small but is most significant for n = 1 electrons,
high-Z elements, and low transition energies ∆E. Large changes in angular momentum L also
make internal conversion more important.

Internal conversion is particularly important when the selection rules hinder gamma emission.
For example, 0-0 transitions simply cannot decay via gamma emission, so they decay instead via
internal conversion. The internal conversion coefficient for such transitions is thus meaningless, and
the decay rate must be calculated from first principles [3].

Isomers, nuclei in especially long-lived excited or metastable states, are often denoted by an “m”
with the atomic number, for example 99mTc. There are over 100 isomers with lifetimes of minutes
or longer; they generally have ∆E ≤ 300 keV, reducing the incentive to decay, and ∆J ≥ 3, greatly
hindering the decay. Due to these characteristics, isomers generally decay via internal conversion.
One important isomer is an excited state of 60Co, which decays via emission of a 58.6 keV gamma
ray with a half-life of 10.7 minutes and is used for medical applications.

An even rarer process than internal conversion is internal pair creation, in which the virtual
photon emitted by a nucleus splits into a real electron-positron pair [3,4]. Since the rest and kinetic
energies of the electron and positron must come from the decay energy ∆E, internal pair creation
can only happen when ∆E ≥ 2mec

2.
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3 Nuclear Reactions
Nuclei can react with each other or with other particles. This section introduces general methods for
analyzing nuclear reactions, then specifically applies those methods to fusion and fission reactions.

3.1 General Principles
In a typical nuclear reaction, a nucleus X and particle a combine and react to produce a different
nucleus Y and particle b. Such a reaction can be written as

X + a −→ Y + b Straightforward notation for a nuclear reaction (120)

or X ( a , b )Y Intimidating nuclear physicist’s notation for a reaction (121)

Particles a and b could be nuclei, gamma rays, nucleons, electrons, or anything else. When using the
intimidating notation, the smaller initial and smaller final particle/nucleus go inside the parentheses.
Moreover, expressions of the form (a, b) refer to reactions involving the absorption of a and emission
of b which could happen to a number of possible initial X and final Y nuclei.

For simplicity, relativistic effects are ignored in this section. Indeed, common nuclear reactions such
as fusion and fission occur at nonrelativistic collision velocities, v � c. For reactions at relativistic
velocities, see Relativistic Quantum Field Theory, [1], or [4].

Two frames of reference are commonly used. The frame in which particle a is moving and nucleus
X is initially at rest is called the lab frame; it describes the point of view of many laboratory
experiments, in which a beam of a particles bombards a target containing initially stationary X
nuclei. In contrast, in the center-of-mass (CM) frame, the initial particles X and a have equal
but opposite momenta and the final particles Y and b have equal but opposite momenta. As shown
in Classical Mechanics ?.?, this CM frame is equivalent to one particle remaining at rest and the
other particle moving as if it has a reduced mass mred or reduced mass number Ared:

mred =
mXma

mX +ma
or Ared =

AXAa
AX +Aa

(122)

In either frame, the velocity of one particle relative to the other is v. If the kinetic energy of the
bombarding particle a in the lab frame is Ea, lab, the total kinetic energy ECM in the CM frame is

ECM =
1

2
mredv

2 =
mX

mX +ma

1

2
mav

2 =
AX

AX +Aa
Ea, lab (123)

Because ECM < E
a, lab

in Eq. (123), not all of the initial kinetic energy E
a, lab

of the bombarding a
particles can be used to trigger the reactions. An amount ECM of that energy goes into the reaction,
and the rest remains kinetic energy after the particles collide, due to conservation of momentum.

The rate of a reaction in a population of nuclei is usually described in terms of the reaction
cross section σ, the equivalent cross-sectional area that bombarding particles must hit to trigger
the reaction. For a general introduction to cross sections, see Classical Mechanics ?.?. In nuclear
physics, cross sections are usually measured in units of barns (b, as in hitting the side of a barn),
where 1 b ≡ 10−28 m2. Note that the barn unit was chosen to correspond to the rough area of an
average-sized nucleus of diameter ∼ 10−14 m.

Nuclear reaction cross sections can be calculated by a variety of methods, some of which are more
appropriate for certain types of reactions than others [1-4]. However, the most broadly applicable
method is the compound nucleus/Breit-Wigner approach, in which the initial particles form a
compound nucleus C as an intermediate state before disintegrating into the final products:

X + a −→ C −→ Y + b Compound nucleus treatment of reactions (124)
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From quantum physics, colliding particles behave like blurry waves with de Broglie wavelength λ or
wavevector k = 2π/λ = p/h̄ = mredv/h̄. Colliding particles cannot be localized within a distance
smaller than ∼ λ/π = 2/k or equivalently an area ∼ π/k2, so the reaction cross section varies like

σ ∼ π

k2
=

πh̄2

2mred ECM
=

6.5× 105 barn

Ared ECM, eV
(125)

At high energies, the wavelength becomes smaller than the classical radius R of the colliding
particles, so they stop acting like blurry waves and act more like hard spheres with a reaction cross
section σ ∼ πR2.

From conservation of angular momentum, the compound nucleus must have spin J = JX + Ja + l,
where JX and Ja are the spins of the initial particles and l is the relative angular momentum
between them if they do not collide head-on. Usually the spin orientations are not known, so the
cross section is averaged over the (2JX + 1)(2Ja + 1) possible initial particle spin orientations and
summed over the 2J + 1 spin orientations of the compound nucleus, introducing a factor Gs in σ:

Gs =
2J + 1

(2JX + 1)(2Ja + 1)
(126)

For spinless particles, Eq. (126) reduces to Gs = 2l+1. Physically, particles with momentum p and
angular momentum between lh̄ and (l + 1)h̄ have an impact parameter between bl = lh̄/p = l/k
and bl+1 = (l + 1)h̄/p = (l + 1)/k [1]. Thus these particles strike an area [Fig. 18(a)]

πb2l+1 − πb2l =
π

k2

[
(l + 1)2 − l2

]
=

π

k2
(2l + 1) =

π

k2
Gs (127)
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Figure 18. Factors in nuclear reaction rates. (a) The area in which a particle can strike
depends on its impact parameter b, which in turn depends on the particle’s angular momentum l
as shown in Eq. (127). (b) The energy spectrum of the excited state of the compound nucleus
introduces the Lorentzian shape from Eq. (132).

Due to the energy of the initial particles, the compound nucleus is generally created in an excited
state, which decays after a certain period of time into a lower-energy state, for instance by disin-
tegration into final particles Y and b or back into the original particles X and a. Because excited
states do not last forever, their energies are not exact but rather get blurred out a bit, thanks to
the Heisenberg uncertainty principle. If an excited state decays by process i with an exponential
decay time τi, the energy of the excited state is spread out by a width Γi according to

τi ≈
h̄

Γi
(128)
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Treating excited states of the compound nucleus as harmonic oscillator states separated by an
energy spacing D = h̄ωo, nucleons slosh back and forth and hit the potential barrier surrounding
the nucleus at a frequency f = ωo/2π. If Ti is the transmission probability that the nucleons will
escape through the barrier via decay process i, the corresponding width of an excited state is

Γi =
h̄

τi
= Ti h̄f = Ti

h̄ωo
2π

= Ti
D

2π
(129)

The transmission probability depends on whether the escaping particles are charged, have angular
momentum l, and have an energy E above or below the potential barrier VB surrounding the
nucleus. For charged particles with no angular momentum, T is given by Eqs. (76) and (77) for
E � VB, while T approaches 1 for E � VB.

For a neutron with no angular momentum, T may be found by applying quantum physics to a
particle exiting a square well. The transmission coefficient depends on the neutron’s wavevector or
energy inside and outside the nuclear potential well (Nonrelativistic Quantum Physics ?.?),

T =
4 kinside koutside

(kinside + koutside)2
=

4
√
Einside Eoutside

(
√
Einside +

√
Eoutside)2

(130)

If an escaping particle has angular momentum, it must pass through an additional potential barrier
caused by centrifugal force. This greatly complicates the transmission coefficients for both charged
and uncharged particles [3]. Fortunately, nuclear reactions are generally dominated by particles
without angular momentum due to the lower potential barriers.

The total width of an excited state is the sum of the decay mode widths, Γ =
∑
i Γi. In the reaction

in Eq. (124), the compound nucleus C can disintegrate back into X + a with width Γa or it can go
on and disintegrate into Y + b with width Γb, so the total decay width of state C is Γ = Γa + Γb.
An excited state’s wavefunction oscillates due to the state’s mean energy Er and decays due to Γ:

Ψ(t) = Ψo exp

(
− iErt

h̄

)
exp

(
− Γt

2h̄

)
= Ψo exp

[
−
(
iEr +

Γ

2

)
t

h̄

]
(131)

Equation (131) uses Γ/2 because it is actually the measured probability |Ψ(t)|2 that decays like Γ.
Fourier-transforming Ψ from a function of t to a function of energy E and squaring to obtain the
probability density, the energy spectrum of the excited state is a Lorentzian shape [Fig. 18(b)]:

|Ψ(E)|2 =
1

(E − Er)2 + 1
4Γ2

(132)

A nuclear reaction is far more likely if the initial particles have the right energy to produce a specific
state of the compound nucleus, a condition which is called a resonance. To account for this effect,
the probability density of the excited state can be multiplied by the energy widths of the incoming
process a and final process b:

ΓaΓb

(E − Er)2 + 1
4Γ2

(133)

Because the step X + a↔ C is reciprocal, the decay width Γa figures even in the forward reaction.

Combining Eqs. (125), (126), and (133) yields the complete Breit-Wigner cross section formula
for reactions involving an isolated resonance of a compound nucleus:

σab =
π

k2
Gs

ΓaΓb

(E − Er)2 + 1
4Γ2

Breit-Wigner formula (134)
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If there are many closely spaced resonances, Eq. (134) must be averaged over the typical spacing
〈D〉 between the resonances:

σab =
π

k2

〈
Gs

ΓaΓb
Γ

〉
2π

〈D〉
(135)

Unlike in compound nucleus reactions, in direct reactions only a few nucleons of the colliding
nuclei actually interact. Direct reactions generally occur at energies above ∼ 20 MeV. At these
energies, the de Broglie-wavelength-limited cross section for an incident nucleon (Ared = 1) in Eq.
(125) is < 3 fm2 or < 2 fm wide, small enough to strike individual nucleons instead of an entire
nucleus. Because the nucleons in a deuteron are more weakly bound and more widely spaced than
nucleons in other nuclei, deuterons can undergo direct reactions at even lower energies, ∼ 10 MeV.
A common example is the (d,p) reaction, in which a deuteron strikes a nucleus and becomes just
a free proton, leaving its neutron behind in the target nucleus. This process is illustrated in Fig.
19(a) and is called a stripping reaction. The opposite process, shown in Fig. 19(b), is a pickup
reaction (p,d) in which a proton steals a neutron from a target nucleus to become a deuteron.
Whereas compound nuclear reactions can take up to ∼ 10−15 sec for the compound nucleus to sort
itself out (see Section 3.3), direct reactions only require a few nuclear interaction times, say 10−22

sec, for their nucleon-nucleon interactions. Because direct reactions require high energies and only
occur in certain situations, they will not be considered further here; see [1-3] for more information.

(a)  Stripping reaction (b)  Pickup reaction 
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to be small enough for individual nucleons to interact 
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Figure 19. Direct reactions. (a) In a stripping reaction, an energetic nucleus loses one of its
neutrons to a target nucleus in a collision. (b) In a pickup reaction, an energetic nucleus acquires
an extra neutron from a target nucleus in a collision.

The optical model is useful for analyzing scattering events, X + a → X + a. It assumes that
incident particles interact with a nucleus in a fashion similar to light waves striking a refracting and
slightly absorptive glass sphere. For this reason, the optical model is sometimes called the cloudy
crystal ball model. The optical model is explained in more detail in Nonrelativistic Quantum
Physics ?.? and [1-3]. Because this model is not particularly useful for analyzing reactions in which
nuclei undergo changes, it will not be considered further here.
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3.2 Fusion Reactions

In fusion, two small nuclei react to form a larger nucleus, generally releasing several MeV of energy
in the process. This is the energy source in stars and hydrogen or H-bombs, and someday it may
power fusion reactors. (See Plasma Physics and Fusion and [5].)

Fusion Reaction Cross Sections

The most readily achieved fusion reactions involve deuterons (D) and/or tritium nuclei (T) [Fig.
20]:

D + T → 4He (3.5 MeV) + n (14.1 MeV) (136)

D + 3He → 4He (3.6 MeV) + p (14.7 MeV) (137)

D + D →
{

T (1.01 MeV) + p (3.02 MeV) [50%]
3He (0.82 MeV) + n (2.45 MeV) [50%]

(138)
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Figure 20. Most readily achieved fusion reactions. (a) Deuterium + tritium reaction. (b)
Deuterium + helium-3 reaction. (c) Deuterium + deuterium reaction.

Fusion energy appears as kinetic energy p2/2m of the products. When the fragments separate with
equal but opposite momenta p, the ratio of their kinetic energies agrees with Reactions (136)-(138):

E1

E2
=

p2/2m1

p2/2m2
=

A2

A1
(139)
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Fusion cross sections are a product of four factors (Fig. 21), which will be calculated below.

Physical Factors in Fusion Cross Section (in barns) 

 (2J+1) 
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Figure 21. Physical origin of the four factors in fusion cross sections.

When two nuclei collide, they must tunnel through the Coulomb barrier between them in order to
fuse. Adapting Eqs. (76) and (77), the tunneling transmission probability is

T = e−2G ≈ exp

(
−31.4Z1Z2

√
A1√

E1 lab, keV

)
exp

[
1.154

√
Z1Z2Ared

(
A

1/3
1 +A

1/3
2

)]
(140)

The ratio A/E in the first factor in Eq. (140) may be expressed in either the CM or the lab frame:

Ared

ECM
=

A1A2

A1 +A2

A1 +A2

A2

1

E1 lab
=

A1

E1 lab
(141)

Using Eq. (129), the incoming Γa and outgoing Γb widths for a fusion reaction are

Γa = e−2G D

2π
Γb =

D

2π
� Γa Γ = Γa + Γb ≈

D

2π
(142)

It has been assumed that T ≈ 1 for the outgoing fusion reaction products, since they gain enough
energy to go well over the top of the Coulomb barrier.
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From Eqs. (134) and (125), the cross section for a fusion reaction is

σ ≈ 4
π

k2

Gs

1 + 16π2
(
E−Er
D

)2 e
−2G =

S(E)

E1 lab, keV
exp

(
−31.4Z1Z2

√
A1√

E1 lab, keV

)
barn (143)

where S(E) ≡ (A1 +A2)2

A1A2
2

2600 Gs

1 + 16π2
(
E−Er
D

)2 exp

[
1.154

√
Z1Z2Ared

(
A

1/3
1 +A

1/3
2

)]
(144)

S and E may be expressed in either the lab or CM frame by using Eq. (141).

Gs depends on the particles’ spins [Eq. (126)]. For a deuteron, J1 = 1 from Section 1.5. A triton
or 3He nucleus has one unpaired nucleon, giving J2 = 1/2. In the compound nucleus formed in a
D+T or D+3He reaction, the odd nucleon must have l = 1 (two nucleons already occupy l = 0)
and s = +1/2 (the energy is lower if s and l are parallel instead of antiparallel), so J = 3/2. Thus
the spin-dependent factor is Gs = 2/3 for D+T and D+3He reactions.

For l = 0, the spin factor Gs is the fraction of nuclei that have the correct spins to fuse out of a
population with randomly oriented spins. If the spins are all oriented correctly, Gs is replaced by 1.
This boosts the cross section by 50% for D+T and D+3He and thus could significantly improve the
performance of fusion reactors. Nuclear polarization can also greatly suppress neutron-producing
D+D side reactions relative to cleaner D+3He reactions in a D+3He plasma, thereby reducing the
radioactivity in a fusion reactor. Nuclei in a fusion plasma can be initially polarized by strong
magnetic or electromagnetic fields, and the nuclear polarization is approximately conserved during
two-nucleon collisional scattering events because the nuclei cannot exert much torque on each other
[6]. However, the polarization is affected by three-body long-range Coulomb scattering, interactions
with plasma waves, and interactions with the walls of the plasma confinement system. It is unclear
whether these effects would randomize the nuclear polarizations before most of the nuclei can fuse.

For energies near the resonance energy Er, the factor S(E) varies rapidly, reaching a peak value at
E = Er that does not depend on the parameters Er and D. For D+T, the resonance peak occurs
at E1 lab, r = 128 keV. This yields S(Er) =19,200 in Eq. (144) and hence σ = 3 barns in Eq. (143),
compared with the actual peak σ ≈ 5 barns [Fig. 22(a)]. Similarly, using E1 lab, r = 450 keV for
D+3He yields S(Er) =45,500 and σ ≈ 1.5 barns, whereas the actual peak is σ ≈ 0.9 barns. One
should note that the WKB approximation underlying the Gamow factor e−2G is only an order-of-
magnitude estimate, that the results depend exponentially on the precise values of nuclear radii,
and that more than one resonance may actually contribute to the measured value. In view of these
limitations, the agreement between the calculated and measured cross sections is quite satisfactory.

From Section 1.3, the average spacing between low-lying energy levels of light nuclei is D(0) ∼ 1
MeV in the CM frame, or ∼ 2 MeV as judged from its effect on energies in the lab frame. This is
in general agreement with the values that make Eqs. (143) and (144) give the best experimental
agreement, D ≈ 2 MeV for D+T and D ≈ 5.5 MeV for D+3He.

At low energies, E � Er, the factor S is approximately constant, S(E) ≈ S(0) = S(Er)[1 +
16π2(Er/D)2]−1, and the fusion cross section becomes

σ ≈ S(Er)

1 + 16π2
(
Er
D

)2

exp
(
−31.4Z1Z2

√
A1/E1 lab, keV

)
E1 lab, keV

barn (145)
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Figure 22. Fusion cross sections. (a) Cross section σ(E) for key reactions. (b) For a
Maxwellian distribution of particle energies, the overlap between 〈σv〉 and the number of particles
dn(E)/dE with a given energy determines the reactivity 〈σv〉. (c) The reactivity 〈σv〉 vs. T for
selected reactions.

Adjusting S(Er) to match the measured peak cross sections and inserting the other necessary
parameters, one finds for energies far below resonance:

σD+T ≈ 20,000
exp

(
−44.4/

√
E1 lab, keV

)
E1 lab, keV

barn ≈ 12,000
exp

(
−34.4/

√
ECM, keV

)
ECM, keV

barn (146)

σ
D+3He

≈ 10,000
exp

(
−88.8/

√
E1 lab, keV

)
E1 lab, keV

barn ≈ 6000
exp

(
−68.8/

√
ECM, keV

)
ECM, keV

barn (147)

Reaction (138) is more difficult to achieve at similarly low energies. Because these energies are too
low for direct reactions, (138) must proceed via formation of a 4He compound nucleus. Yet 4He
is exceptionally stable and its excited states are at very high energies, so it does not make a good
intermediate. Empirically, this lowers the total cross section for both branches to

σD+D ≈ 350
exp

(
−44.4/

√
E1 lab, keV

)
E1 lab, keV

barn ≈ 175
exp

(
−31.4/

√
ECM, keV

)
ECM, keV

barn (148)

The first step that occurs in most fusion reactions in the sun is

p + p → D + e+ + νe (149)
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This reaction requires one of the protons to beta decay into a neutron during the fusion process.
Fusion occurs within roughly a nuclear interaction time 10−23 sec [Section 1.2], whereas beta decay
of isolated nucleons requires ∼ 900 sec [Section 2.2]. If the probability of simple fusion has S(0) ∼
20,000 comparable to the value for hydrogen isotopes in Eq. (146), this value must be modified to
account for the probability that a beta decay will occur during the fusion process: S(0) ∼ (10−23

sec/900 sec)× 20,000 ∼ 2× 10−22. This agrees with the measured cross section:

σp+p ≈ 6× 10−22 exp
(
−31.4/

√
E1 lab, keV

)
E1 lab, keV

barn ≈ 3× 10−22 exp
(
−22.2/

√
ECM, keV

)
ECM, keV

barn (150)

As shown in Fig. 23, the easiest fusion reactions to achieve are (136)-(138). Of other reactions
with hydrogen isotopes, p+T involves a 4He intermediate, p+D has too few neutrons to proceed
efficiently, and T+T has too many neutrons. 4He, the only other available helium fuel, is already
so happy with respect to its binding energy that it makes a very poor partner for fusion. All other
elements have a higher charge, which increases the Coulomb barrier, and a higher mass, which
reduces the probability of tunneling through that barrier, as may be seen from Eq. (145). p+12C
and higher reactions can occur, but the high Coulomb barrier makes the cross section so low that
only stars have enough nuclei to produce a significant number of these reactions (Plasma Physics
and Fusion 5.3).
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Figure 23. Possible fusion reactions. Reactions which are theoretically feasible for power
production in controlled fusion reactors are green, those which are borderline are yellow, and those
that are not feasible are red. Because of their size, stars can produce power from a greater number of
reactions than are feasible in controlled fusion reactors. For more information, see Plasma Physics
and Fusion.
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Fusion Reactivity 〈σv〉 for Maxwellian Velocity Distributions

In a population of nuclei with densities n1 and n2, the fusion reaction 1+2 occurs at a rate

fusion reactions/sec

volume
= n1n2 〈σv〉 (151)

in which the reactivity 〈σv〉 is the product of the cross section and the relative collision velocity,
averaged over all possible collision velocities in the population. If like nuclei fuse, 1+1, n1n2 in Eq.
(151) should be replaced by 1

2n
2
1; the 1

2 prevents double-counting of reacting pairs of nuclei.

Coulomb scattering makes nuclei rapidly assume a Maxwellian distribution of velocities (Plasma
Physics and Fusion 2.1). Thus 〈σv〉 is usually averaged over Maxwellian distributions of nuclei.
This calculation uses the center-of-mass energy E ≡ ECM and proceeds as follows:

〈σv〉 =

∫ ∞
0

(
4πv2dv

)
(σv)

(
mred

2πkBT

)
3/2exp

(
−mredv

2

2kBT

)
=

√
8

πmred

∫ ∞
0
dE E σ

e−E/kBT

(kBT )3/2
(152)

≈
√

8

πmred

S(0)

(kBT )3/2

∫ ∞
0

dE e−f(E) where f(E) ≡ E

kBT
+

√
EG
E

(153)

The integral in Eq. (153) involves σ, which drops off rapidly at low energies due to the Gamow
barrier penetration factor, and the number of particles at a given energy, which falls exponentially
at high energies for a Maxwellian distribution. The function e−f(E) describes the overlap between
these factors [Fig. 22(b)]. Setting the derivative f ′(Eo) ≡ df/dE|Eo = 0, one finds the energy Eo
with the peak value of e−f(E), the best combination of penetration probability and particle number:

Eo ≈
(

1

2
kBT

√
EG

)2/3

≈ 6.27
(
Z1Z2

√
Ared TkeV

)2/3
keV (154)

For example, for D+T at T = 20 keV, nuclei with Eo = 49 keV contribute most to the fusion rate.

A Taylor expansion of f(E) about E = Eo [where f ′(Eo) = 0] simplifies the integral in Eq. (153):

f(E) ≈ f(Eo) +
1

2
(E − Eo)2f ′′(Eo) (155)

in which f(Eo) = 3

(
EG

4kBT

)1/3

= 18.76

[
Z2

1Z
2
2Ared

(kBT )keV

]1/3

and f ′′(Eo) =
3

[2EG(kBT )5]1/3
(156)

The integral in Eq. (153) may be evaluated analytically by extending its lower limit to E = −∞
(with negligible error) and using Eqs. (155)-(156) and the relation

∫∞
−∞ e
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√
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exp
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−
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red

T
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]
cm3

sec
(157)
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For reactions of interest, Eq. (157) yields:

〈σv〉
D+T

∼ 5× 10−12

T
2/3
keV

exp

(
− 19.94

T
1/3
keV

)
cm3

sec
for T < 30 keV (158)

〈σv〉
D+3He

∼ 3× 10−12

T
2/3
keV

exp

(
− 31.65

T
1/3
keV

)
cm3

sec
for T < 150 keV (159)

〈σv〉
D+D

∼ 4× 10−14

T
2/3
keV

exp

(
− 18.76

T
1/3
keV

)
cm3

sec
for T < 50 keV (160)

〈σv〉
p+p

∼ 8× 10−38

T
2/3
keV

exp

(
− 14.89

T
1/3
keV

)
cm3

sec
for T < 50 keV (161)

Equations (157)-(161) used several approximations: (1) The low-energy cross section (145) neglects
resonance effects included in the full cross section, Eqs. (143) and (144). (2) The Taylor series in Eq.
(155) only approximates the actual f(E). (3) The Gamow factor e−2G neglects nuclei with enough
energy to go over the Coulomb barrier instead of tunneling through it. These approximations limit
the accuracy of Eqs. (157)-(161) to within ∼ 20% and constrain their range of validity to the
temperatures indicated. Much more accurate results [Fig. 22(c)] can be obtained via numerical
integration using Eqs. (152), (143), and (144) with the substitution e−2G → 1/(e2G + 1) so that
the transmission probability approaches the correct value of 1 for energies far above the barrier.

Muon-Catalyzed Fusion

Instead of using high thermal energies to bash nuclei together until they fuse, an alternative is
to use muons (µ−) to catalyze fusion between low-temperature nuclei (Fig. 24) [6]. A muon is
basically an overweight electron with a mass mµ ≈ 106 MeV/c2, or ∼ 207x larger than the usual
electron mass me (Relativistic Quantum Field Theory 1.4 and 3.2.1). Muons undergo a form of
beta decay:

µ−
2.2 µsec−→ e− + νe + νµ (162)

As will be shown, the muon half-life is long enough for a muon to catalyze many fusion reactions
by temporarily imitating an electron in hydrogen molecules. Nonrelativistic Quantum Physics ?.?
gives the Bohr energy of a particle with charge −e and mass m bound to a hydrogen nucleus:

E
Bohr

= −
(

e2

4πεo

)2
m

2h̄2 , (163)

which is Ee ≈ −13.6 eV for an electron but Eµ = (mµ/me)Ee ≈ −2.81 keV for a muon. Thus it is
energetically very favorable for a muon to displace an electron orbiting a hydrogen nucleus.

Likewise, the Bohr orbital radius for a negative particle circling a hydrogen nucleus is

r
Bohr

=
4πεo
e2

h̄2

m
(164)

The Bohr radius is r
Bohr, e

≈ 5.3× 10−11 m for an electron but only r
Bohr, µ

= (me/mµ)r
Bohr, e

≈ 256
fm for a muon. The separation between a deuteron and triton bound together by a muon (a
DT+ molecule, analogous to the molecule H+

2 ) is ro ≈ 2r
Bohr, µ

≈ 500 fm. In the CM frame,
this molecular binding may be represented by a simple harmonic oscillator potential with mred =
mDmT /(mD +mT ), plus the usual Coulomb repulsion between the deuteron and triton:

V (r) =
e2

4πεor
+

1

2
mred ω

2
o r

2 (165)
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Figure 24. Muon-catalyzed fusion cycle. A free muon injected into a liquid mixture of
deuterium and tritium displaces an electron to form a very tightly bound DT+ molecule. The D
and T rapidly fuse, emitting an α particle, a neutron, and the muon. Approximately 0.5% of the
muons permanently stick to the α particle, but the remaining 99.5% repeat the fusion cycle.

The minimum of the potential occurs at the separation distance ro:

V ′(ro) = 0 =⇒ mred ω
2
o =

e2

4πεor3
o

=⇒ ωo =

√
1

mred r3
o

e2

4πεo
(166)

The potential and its second derivative can also be calculated at that equilibrium separation:

V (ro) =
e2

4πεoro
+

1

2
mred ω

2
or

2
o =

3

2

e2

4πεoro
≈ 4.32 keV (167)

V ′′(ro) = 2
e2

4πεoro
+ mred ω

2
o = 3mred ω

2
o (168)

V (r) may then be approximated as a Taylor series about r = ro:

V (r) ≈ V (ro) +
1

2
V ′′(ro)(r − ro)2 ≈ V (ro) +

1

2
mred

(√
3ωo

)2
(r − ro)2 (169)

From Eq. (169), the DT+ molecule vibrates at an angular frequency ωvibr:

ωvibr =
√

3ωo =

√
3

mred r3
o

e2

4πεo
≈ 1.66× 1018 sec−1 or h̄ωvibr ≈ 1.09 keV (170)

Including V (ro) and the zero point energy 1
2 h̄ωvibr, a DT+ molecule has a 4.87 keV ground state

energy. Using this CM energy and Ared = 6/5, Eq. (140) gives a transmission probability T ≈
1.36×10−6 upon each encounter with the Coulomb barrier between the D and T. These encounters
occur with frequency fvibr = ωvibr/2π, yielding a decay rate fvibrT due to fusion, or a half-life

τ1/2 =
ln 2

T

2π

ωvibr
≈ 2× 10−12 sec (171)
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Muons are produced via an indirect route. When high-energy neutrons collide, a neutron can turn
into a proton. To conserve charge, it emits a negative pion, converting some of the initial kinetic
energy into the mass of the new π−. Negative pions convert to muons ∼ 85x faster than the muons
decay, resulting in a population of useful muons:

n + n −→ n + p + π− (172)

π−
26 nsec−→ µ− + νµ (173)

Plain neutrons are uncharged and therefore difficult to accelerate and control. The next best
approach is collisions of neutron-rich nuclei, particularly triton-triton collisions.

In the CM frame, at least the pion rest energy 139 MeV must be supplied to achieve reaction
(172). Yet there are several competing processes that consume much of the supplied energy, such
as n+n→n+n+π0 and collisions involving the proton in T. This raises the net energy required to
produce a negative pion in the CM frame by roughly an order of magnitude to at least 1.5 GeV.

Because it is difficult to achieve high densities and hence large reaction rates with colliding T
beams, usually a T beam and dense stationary T target are used. From Eq. (123), this lab frame
method needs m1/mred = 2 times as much energy as the CM frame, or > 3 GeV. At typical
accelerator efficiencies, producing a muon therefore requires ∼ 5 GeV, or ∼ 50x more than the
muon rest energy of 106 MeV. It would be useful to find ways to lower the required energy, perhaps
by exploiting a resonance that greatly promotes reaction (172) over the competing reactions or by
somehow making muons directly.

With charge Z = 2, α particles bind muons more tightly than D or T do. The measured probability
that a µ− will permanently stick to the α particle after D+T fusion is Pstick ≈ 0.005. Thus one
muon can catalyze 1/Pstick ≈ 200 fusion reactions before binding to an α, where it remains until
it decays. With 17.6 MeV of fusion energy produced per reaction, the 200 reactions catalyzed
by one muon generate 3.5 GeV total, or ∼ 1 GeV after Carnot-limited conversion of the thermal
energy to electricity. This is significantly less than the ∼ 5 GeV of input energy required to create
the muon initially. Operating at temperatures T > 1 keV eliminates µ− sticking to α particles
but unfortunately also to deuterons and tritons. Clever ways to selectively unstick muons from α
particles, such as electromagnetic waves that resonantly impart just the right energy, are needed.

An initially free muon leads to a desired composite molecule in an experimentally measured time
τmol ∼ 5× 10−9 sec for a liquid mixture of equal parts D and T. This is far longer than the actual
fusion time calculated in Eq. (171) and limits the rate at which consecutive fusion reactions can be
catalyzed (Fig. 24). The time to form a composite molecule can be reduced a few-fold if the initial
muon has just the right energy, but this can only be controlled for the first fusion when the muon
is injected, not succeeding fusion reactions. Note that if sticking of muons to α particles could be
entirely overcome, a muon could produce τµ/τmol ≈ 440 fusion reactions before it decayed, only
about twice as many as the current limit.

Improvements on the fundamental approach of muon-catalyzed fusion are difficult to find. Reactions
other than D+T are considerably more difficult to catalyze. Moreover, massive negative particles
other than muons are even harder to produce and generally have shorter lifetimes than muons.
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3.3 Fission Reactions

Fission is the separation of a large nucleus into two smaller nuclei, and it can be either spontaneous
or induced by neutron absorption [7]. Examples of each type are:

Spontaneous: 254Fm −→ 139Ba + 112Ru + 3 n + ∼ 230 MeV (174)

Neutron-induced: n + 235U −→ 236U −→ 140Xe + 94Sr + 2 n + ∼ 200 MeV (175)

Figure 25 shows a timescale for the fission process. This section will explain the characteristics of
fission, starting with the reaction products and energies. Then it will analyze the potential energy
barrier that a nucleus must overcome to fission. Finally it will explain the different ways in which
spontaneous and neutron-induced fission overcome this barrier. To accomplish these tasks, we will
rely heavily on the liquid drop model of the nucleus, only introducing shell corrections as necessary.

~10-14 sec ~10-20 sec ~10-17 sec ~10-14 sec 

n 
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γ 

Initial 
excitation 
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emission 
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emission 

Figure 25. Time scale for events occuring in the fission process.

Fission Energy and Products

Equation (18) shows that as nuclei become larger and larger, the Coulomb repulsion among the
protons increases rapidly, ECoulomb ∝ Z2/A1/3 ∝ A5/3 (recall that Z ∼ 0.4A for large nuclei). This
is the fundamental cause of fission, since division of a large nucleus into two smaller nuclei greatly
lowers this energy and hence its contribution to the total mass. On the other hand, fission increases
the nuclear surface area and thus the mass contribution of the surface term Esurface from Eq. (18).
The relative values of these competing effects determine whether fission can occur; the other terms
in the mass formula are relatively unaffected by fission. The energy ∆E released by a nucleus with
given values of A and Z which fissions into two equal fragments with A/2 and Z/2 is

∆E =

[
M(A,Z) − 2M

(
A

2
,
Z

2

)]
c2 = 0.7

Z2

A1/3

(
1− 1

22/3

)
+ 17A2/3

(
1− 21/3

)
MeV

= 0.26A2/3

(
Z2

A
− 17

)
MeV (176)
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The parameter Z2/A, arising from the ratio between the Coulomb and surface contributions to
nuclear mass, is very important for fission. It increases roughly linearly with atomic number
(Z2/A ∼ 0.4Z for Z/A ∼ 0.4). From Eq. (176), elements with Z2/A > 17, or equivalently Z ≥ 42,
can undergo fission with a net release of energy. For uranium with A = 236 and Z2/A ≈ 36, Eq.
(176) predicts an energy release ∆E ≈ 190 MeV. This is very close to the actual value in Eq. (175),
even though the two fission fragments do not have equal sizes as assumed in Eq. (176).

Uranium actually fissions into a light fragment with mass number A1 ∼ 95 and a heavy fragment
with A2 ∼ 140. The sizes of the resulting light and heavy fragments vary somewhat, creating a
double-peaked mass distribution [Fig. 26(a)] which is difficult to fully explain even with complex
computer models. However, an important key is that the doubly magic nucleus with Z = 50 and
N = 82 occurs at the lower edge of the heavy fragment mass range. During fission, it is energetically
preferable to form this doubly magic nucleus, or this nucleus with a few extra nucleons added on.
The remainder of the original nucleus becomes the light fragment. As further proof of this principle,
Fig. 26(b) shows that for different masses of the fissioning nucleus, the heavy fragment mass peak
remains essentially fixed (especially at its lower end near the doubly magic numbers). The light
peak is left to shift with the changes in total mass. If there is very little energy initially put into
the fission reaction, the trough between the light and heavy mass peaks is quite deep. Yet as the
input energy increases, the trough becomes less and less deep [Fig 26(c)]; the fissioning nucleus
becomes able to fall into almost any final state, not just the energetically lowest ones.
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Figure 26. Mass distributions of nuclear fragments resulting from fission. (a) Low-
energy neutron-induced fission of 235U. (b) Effect of increasing the initial mass of the nucleus
undergoing fission by ∆A. (c) Effect of input energy on neutron-induced 235U fission.

Most of the energy released by fission appears as kinetic energy of the light and heavy fragments.
For fission of 235U, approximately 168 MeV is released as kinetic energy of the fission fragments.
Using Eq. (139), the light fragment thus has an average energy (140/235)× 168 MeV = 100 MeV,
while the heavy fragment has an average energy (95/235) × 168 MeV = 68 MeV. Of course, the
observed energies vary about these mean values just as the observed atomic masses vary about the
values 95 and 140.
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Immediately after fission, each fragment has a great deal of residual energy Eres. From Eq. (33),
this is equivalent to a nuclear temperature kBTnuc =

√
Eres/a, where a ∼ 5/MeV for relatively

large nuclei. Roughly half of this residual energy is imparted to neutrons, which then escape
from the nuclear potentials of the fragments. This process is analogous to evaporation, in which
particles from a hot liquid are ejected into the gaseous state, thereby cooling the remaining liquid.
The ejected neutrons are called prompt neutrons, because they are emitted very soon after the
fission event. For 235U, the prompt neutrons have an average energy 〈En〉 ≈ 2 MeV. Extending the
thermodynamic analogy, the energy spectrum f(En) of the emitted neutrons may be approximated
as that of a Maxwellian gas (see Statistical Physics ?.?),

f(En) =
2

(kBTn)3/2

√
En
π

exp

(
− En
kBTn

)
, (177)

where the relation 〈En〉 = 3
2kBTn gives a neutron temperature of kBTn ≈ 1.3 MeV, which must

also be the initial temperature Tnuc of the fission fragments that emit the neutrons. More precise
expressions for the neutron energy distribution take into account the moving frame of the fission
fragments during neutron emission, but Eq. (177) still gives a good idea of the energy distribution.
On average roughly 2.5 prompt neutrons are emitted per fission event for uranium or plutonium,
making chain reactions possible: one neutron-induced fission produces ∼ 2 neutrons and hence two
neutron-induced fissions, which cause ∼ 4 more fissions, and so forth.

The other half of the energy of the excited fission fragments (∼ 7 MeV) is radiated away as gamma
rays with an average energy 1 MeV each. Most of the gamma rays are emitted after the prompt
neutrons when there is not enough residual energy to liberate another neutron.

As shown by Eq. (20), the most stable heavy isotopes have a lower value of Z/A than the most
stable light isotopes. Even after emitting approximately one prompt neutron each, the fission
fragments have almost the same Z/A ratio as their parent nucleus [Fig. 27(a)]. Thus the fragments
have too many neutrons and too few protons to be stable against β decay at their new mass values.
The fragments undergo a series of beta decays, emitting energetic electrons and neutrinos until
they arrive at stable Z/A ratios. As the fragments approach the stable values, the half-lives of the
decays generally become longer and longer. Examples of these decay chains are:

A = 93 : 37Rb
6 sec−→ 38Sr

7 min−→ 39Y
10 hr−→ 40Zr

106 yr−→ 41Nb (stable) (178)

A = 140 : 54Xe
16 sec−→ 55Cs

66 sec−→ 56Ba
12.8 days−→ 57La

40 hr−→ 58Ce (stable) (179)

After a β decay, a fission fragment may be in an excited state of an element in which one of the
neutrons has enough energy to escape. Such delayed neutrons are emitted long after the fission
event, only after one or more β decays. Although there are only ∼ 1/100 as many delayed neutrons
as prompt neutrons, they can be quite significant. As discussed in the fission power summary,
balancing a fission reactor so that it needs the delayed neutrons to sustain its chain reaction makes
the reactor easier to control, since the reaction rate cannot change very quickly.

Neutron activation within the fission fuel also produces a variety of radioactive actinides. As shown
in Fig. 27(b), there are few choices for fissile fuel to control the products. Eliminating non-fuel
actinides from fresh fuel would reduce the resulting actinide waste, but at the price of making the
fuel a proliferation and criticality hazard and also preventing breeding of new fuel species.

Table 1 lists the average energy breakdowns for neutron-induced fission of 235U and 239Pu, the two
nuclei of greatest applied interest.
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Figure 27. Products of fission reactions are inherently radioactive. (a) Fission fragments
must be β− emitters. (b) Neutron activation within the fission fuel produces a variety of actinides.
Red arrows indicate the direction in which one nucleus is transmuted into another via (n,γ) neutron
capture, (n,2n) neutron loss, β− decay, and α decay.

Product 235U 239Pu

Light fragment 99.8 101.8
Heavy fragment 68.4 73.2
Prompt neutrons 4.8 5.8
Prompt gamma 7.5 7
β from fragments 7.8 8
γ from fragments 6.8 6.2

Neutrinos 12 12

Total 207 MeV 214 MeV

Table 1. Average energy breakdowns (in MeV) for neutron-induced fission of 235U and
239Pu.
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Fission Barrier

The potential energy of a nucleus varies during the fission process, primarily because of changes in
the Coulomb and surface energy contributions. For a typical heavy nucleus [Fig. 28], the potential
has a local minimum for the undeformed nucleus, increases as the nucleus stretches and divides into
two nuclei, and then decreases greatly as the daughter nuclei separate due to their mutual Coulomb
repulsion. In spontaneous and neutron-induced fission, this potential energy fission barrier is
overcome in different ways. Calculating the rates of either type of fission requires information
about the precise shape of the barrier, which fortunately can be obtained from simple models.

rCM 0 
Region A Region B 

Nuclear shape 

V 

(a) (b) 
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~200 MeV 
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V 

Figure 28. Potential energy V of a nucleus fissioning into two fragments as a function
of the separation rCM between the fission fragments. (a) The complete function V (rCM )
shows the local energy minimum of the intact nucleus, the potential barrier to fission, and the large
energy release that accompanies fission. (b) The fission barrier is shown in more detail.

Region A of the potential in Fig. 28(b) covers the nucleus in its undeformed state and as it stretches
to initiate fission. To account for elongation, one models the nucleus as an ellipsoid with eccentricity

ε ≡ ∆R

R
=

(∆R)fm

1.2A1/3
(180)

where ∆R is the departure of the radius from that of a spherical nucleus of comparable volume, as
measured in the direction of elongation. In other words, the ellipsoidal nucleus has a semimajor axis
a = R(1+ε). To preserve the same volume, the cross-sectional area perpendicular to the semimajor
axis must decrease by this same factor (1 + ε). Thus the semiminor axis is b = R/

√
1 + ε.

Changing a spherical nucleus to an ellipsoidal one generally alters only the surface and Colomb
contributions to the nuclear binding energy. Taking the terms of lowest order in ε, one finds [1]:

Es ≈ 17A2/3
(

1 +
2

5
ε2
)

MeV Ec ≈ 0.7
Z2

A1/3

(
1− 1

5
ε2
)

MeV (181)
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Using Eqs. (181) and (180), the net potential energy change upon elongation of the nucleus is

∆V = ∆Es + ∆Ec = ε2
(

2

5
17A2/3 − 1

5
0.7

Z2

A1/3

)
MeV = 6.8ε2A2/3

(
1− Z2/A

49

)
MeV(182)

= 4.72

(
1− Z2/A

49

)
(∆R)2

fm MeV (183)

The parameter Z2/A appears again. For Z2/A < 49, elongation increases the potential energy of
the nucleus, erecting a barrier on the path to fission. Yet for Z2/A > 49, elongation is energetically
favorable and there is no barrier to fission. Using Z/A ≈ 0.39, this means elements with Z ≈ 125
or greater would immediately undergo spontaneous fission. Together with instability to α decay
(Section 2.1), this explains why the periodic table of the elements does not extend into this region.

It is useful to use center-of-mass coordinates to describe the two separating fission fragments. In
such coordinates, one fragment remains fixed at the origin and hence may be regarded as infinitely
massive. The other fragment behaves as if it has a reduced mass mr. Assuming for simplicity that
a nucleus with A nucleons is separating into two equal fission fragments, the reduced mass is

mr ≡

(
1
2A
) (

1
2A
)

1
2A+ 1

2A
931.5

MeV

c2
=

1

4
A 931.5

MeV

c2
(184)

The asymmetric sizes of fragments actually obtained from uranium and plutonium only affect the
reduced mass by a few percent and will be ignored here.

In center-of-mass coordinates, the radial distance from the center of the fragment at the origin to
the center of the other fragment is approximately

rCM ≈ 2 ∆R = 2.4A1/3ε fm (185)

The energy change due to elongation of the nucleus may be written in the form of a simple harmonic
oscillator potential in the center-of-mass frame:

∆V =
1

2
mr

(h̄ωvibr)
2

h̄2 r2
CM =

931.5

2
A

(h̄ωvibr)
2
MeV

(h̄c)2
MeV·fm

(∆R)2
fm MeV (186)

where the nucleus vibrates about the equilibrium spherical shape with angular frequency ωvibr,
repeatedly going from prolate to spherical to oblate and back again like a vibrating drop of liquid.

Setting Eq. (186) equal to Eq. (183), using h̄c ≈ 197.3 MeV·fm, and solving for h̄ωvibr yields

h̄ωvibr ≈ 20

√
1

A

(
1− Z2/A

49

)
MeV (187)

For uranium and plutonium isotopes, this value is h̄ωvibr ≈ 0.7 MeV. Of course, treating a contin-
uously connected, vibrating nucleus like two oscillating fragments is a crude approximation. More
accurate calculations have the same functional dependence as Eq. (187) but give approximately 1
MeV as the vibrational energy of heavy elements [3, 7]. The corresponding vibration time is

τvibr =
2π

ωvibr
≈ 4× 10−21 sec for heavy nuclei (188)

Even a nucleus in the ground state is slightly above the bottom of the well in region A because
it has a harmonic oscillator zero point energy 1

2 h̄ωvibr ≈ 0.5 MeV. This energy is generally much
smaller than the barrier energy and can simply be absorbed into the definition of the barrier height.
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In region B of Fig. 28(b), the potential reaches a maximum and then declines sharply due to terms
of higher order in ε not included in Eqs. (181) and (182). Physically, that is the point at which the
nuclear matter finds it easier to go forward and become two nuclei than to return to being a single
undeformed nucleus. Because of its shape in Fig. 28, this peak is called the saddle point.

For nuclei of different sizes, the saddle point in the potential energy occurs at different points on
the path to fission [Fig. 29(a)]. For a nucleus with the critical value Z2/A = 49, the undeformed
spherical shape with ε = 0 is at the saddle point–the path to fission is all downhill from there. On
the other hand, a nucleus with a very small fissionability parameter, Z2/A � 49, must be pulled
almost completely in two before it prefers to fission instead of going back. (Scission is when the
fragments actually separate.) While this state cannot really be described by an ellipsoidal shape,
it is certainly equivalent to a large departure from sphericity: ∆R ≈ R, or ε ≈ 1. Thus the saddle
point may be said to occur at some critical eccentricity εcrit that varies with the fissionability
parameter:

εcrit ≈ 1.15

(
1− Z2/A

49

)
(189)
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Figure 29. More detailed depiction of nuclear deformations and potential barrier en
route to fission. (a) Nuclear shapes on path to fission, showing where saddle point occurs for
different values of Z2/A. (b) Liquid drop V (r) + shell V (r) = double barrier with peaks VB1 and
VB2. Fission isomers are nuclei that are temporarily trapped in energetic states between the two
peaks and hence are more likely to undergo fission, since they need only tunnel through the final
peak.
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From the physical arguments above, the coefficient in Eq. (189) should be ∼ 1; 1.15 gives the best
agreement with experiments. Inserting Eq. (189) into Eq. (182) yields the peak potential energy

VB ≈ 9A2/3

(
1− Z2/A

49

)3

MeV + (∆VB)other (190)

An extra term (∆VB)other has been added to account for pairing effects. The pairing energy between
nucleons varies slightly as a nucleus is distorted, making the barrier ∼0.4 MeV higher for odd-odd
nuclei, unchanged for even-odd nuclei, and ∼0.4 MeV lower for even-even nuclei. Equation (190)

holds primarily for values of Z2/A
49 greater than 2/3 or so, because that is when the underlying

assumption of an ellipsoidal saddle-point shape is most valid. The barrier height is approximately
6 MeV for 235U and rapidly decreases for higher elements.

The region around the saddle point may be modeled as an inverted parabola and written like an
upside-down simple harmonic oscillator potential. The peak value VB occurs at some separation
rCM = rB between the two fission fragments. ωB would be the oscillation frequency within the
harmonic oscillator potential if it were upright. As it is, ωB defines the barrier curvature, or more
importantly the barrier thickness; a parabolic barrier with a smaller ωB curves less rapidly and
hence is thicker and more difficult to penetrate. Using these definitions and ρ ≡ rCM − rB, the
radial position relative to the fission barrier peak, the barrier energy minus the initial energy E is

V (rCM )− E = V (rCM )− V (0)− 1

2
h̄ωvibr = VB −

1

2
mrω

2
B(rCM − rB)2 = VB −

1

2
mrω

2
Bρ

2(191)

Using this parabolic approximation, the potential barrier exceeds the initial energy in the region

−ρo < ρ < +ρo, where ρo ≡
√

2VB
mrω2

B

(192)

The half-width ρo of the fission barrier may be estimated from the separation between the centers
of the fission fragments at the saddle point, rCM = rB. Inserting Eq. (189) into Eq. (185) yields

ρo ≈ rB − 0 ≈ 2.8A1/3

(
1− Z2/A

49

)
fm (193)

This half-width is approximately 5 fm for uranium and plutonium.

By convention, the barrier curvature is usually multiplied by h̄ and written as an energy. Using
Eq. (192) and (184), this barrier curvature energy is

h̄ωB =

√
2VB
mr

h̄

ρo
≈ 18.3

ρo, fm

√
VB, MeV

A
MeV (194)

Typical values of ρo ≈ 5 fm, VB ≈ 6 MeV, and A ∼ 238 for uranium and plutonium produce a
barrier curvature h̄ωB ≈ 0.6 MeV. Indeed, the barrier curvatures for heavy nuclei are ∼ 0.5 MeV.

Shell effects alter the potential somewhat from what has been calculated so far. As a nucleus
becomes more and more distended, energy shells close, open, and close again, producing an energy
contribution that is a periodic function of rCM [Fig. 29(b)]. As discussed in Section 1.4, shell
effects typically contribute a few hundredths of an MeV per nucleon, amounting to around 3.5
MeV for uranium and plutonium. Since this is comparable to the barrier height, adding the shell
contribution to the single-humped barrier obtained from the liquid drop model produces a double-
humped barrier [Fig. 29(b)]. These shell effects also shift the resting state of large nuclei from
spherical (rCM = 0) to somewhat distorted (rCM 6= 0), as has already been mentioned in Section
1.4.
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The consequences of the double hump will be explored soon, but in brief, they are not so drastic
that we must throw out our previous calculations of the barrier. Either the calculations can be
extended to include the two humps explicitly, or the parameters can be modified somewhat to treat
the two peaks together as effectively one hump.

Spontaneous Fission

During spontaneous fission, the fragments must tunnel through the region where V > E from Eq.
(191). As with quantum tunneling in α decay, the WKB approximation from Eq. (76) can be used
to find the transmission probability T through the fission barrier:

T = exp

{
− 2

h̄

∫ ρo

−ρo
dρ
√

2mr[V (ρ)− E]

}
= exp

{
− 4

h̄

∫ ρo

0
dρ
√

2mr[V (ρ)− E]

}
(symmetrical

barrier)

= exp

(
− 4mrωB

h̄

∫ ρo

0
dρ
√
ρ2
o − ρ2

)
= exp

(
− 4mrωB

h̄

πρ2
o

4

)

= exp

[
− 2π(VB − E)

h̄ωB

]
(195)

The WKB approximation and hence Eq. (195) are only valid for particle energies significantly

below the barrier peak, or for 2π(VB−E)
h̄ωB

� 1. To ensure that the transmission probability T goes

to 1 for energies far above the barrier peak (2π(VB−E)
h̄ωB

� 1), Eq. (195) can be modified:

T =
1

exp[2π(VB − E)/h̄ωB] + 1
(196)

For all but fairly short-lived elements, 2πVB/h̄ωB � 1 is valid and Eq. (195) may be used.

As noted earlier, a large nucleus vibrates with an energy h̄ωvibr ∼ 1 MeV. Thus the frequency with
which the nucleus becomes distorted and encounters the fission barrier is f = ωvibr/2π. By analogy
with α decay, the half-life due to spontaneous fission may be written in terms of the frequency of
encounters with the barrier and the probability T of transmission through the barrier:

τ1/2 =
ln 2

T

2π

ωvibr
= 2.8× 10−21 exp

(
2πVB
h̄ωB

)
sec

≈ 2.8× 10−21 exp

 2π

(h̄ωB)MeV

9A2/3

(
1− Z2/A

49

)3

+ (∆VB)other

 sec (197)

where Eq. (190) was used; (∆VB)other can include shell as well as pairing effects [Fig. 30(a)]. Figure
30(b) compares measured spontaneous fission half-lives to Eq. (197) with h̄ωB ≈ 0.42 MeV and
(∆VB)other =+/-0.4 MeV for odd-odd/even-even nuclei. For elements like uranium and plutonium,
the half-life for α decay is much shorter and dominates over spontaneous fission (e.g., τ1/2, α ≈ 7000
years vs. τ1/2, fission ≈ 2× 1011 years for 240Pu). However, spontaneous fission surpasses α decay as
the dominant decay mode for many nuclei with Z2/A > 39, or Z > 100. Even though the fission
barrier does not cease to exist until Z ≈ 125 as found earlier, tunneling of fission fragments or α
particles through the potential barrier effectively ends the periodic table by Z ≈ 108.
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Figure 30. Fissionability of different nuclei. (a) Fission barrier height VB for the most
stable isobar of each mass number A. The darker curve is based on the liquid drop model from Eq.
(190), while the lighter curve includes shell corrections. (b) Spontaneous fission half-life τ1/2 vs.
fissionability parameter Z2/A for different nuclei.

If it is desired to explicitly include the two humps of the barrier, they may be modeled as two
inverted parabolas with respective peaks VB1 and VB2 and curvatures ωB1 and ωB2. Assuming the
energy is significantly below the peaks and neglecting resonance effects between the humps, the net
transmission probability is simply the product of probabilities like Eq. (195) for each hump:

T = exp

[
− 2π(VB1 − E)

h̄ωB1
− 2π(VB2 − E)

h̄ωB2

]
(198)

One consequence of the double-humped barrier is that nuclei can become temporarily stuck between
the humps [Fig. 29(b)]. Nuclei in this state are very distended, with more energy than the
undistorted ground state but not enough to go over the final fission barrier. The lifetime of such
states is limited by tunneling back through the first hump to the resting state (releasing the excess
energy as gamma rays) or tunneling through the second hump to undergo fission. These fission
isomer states are halfway toward fission and thus more likely to fission than the ground state.



64 Nuclear Physics

Neutron-Induced Fission

Fission reactors and bombs use the neutrons emitted by one fission to produce more fission events,
thereby creating a chain reaction. Such applications require information about the number and
energies of neutrons emitted in fission, which we have already examined. They also require infor-
mation about neutron-induced fission reaction cross sections, which we will now investigate.

Unlike for charged particles in fusion reactions, there is no Coulomb energy barrier for a neutron
to enter a nucleus. When a neutron falls into a nuclear potential well, its energy increases by an
amount equal to the binding energy of an additional nucleon for that nucleus, typically several
MeV. For example, Eq. (19) shows that a neutron added to 235U to form 236U gains an energy

Sn
(

236U
)

=
[
M
(

235U
)
−M

(
236U

)]
c2 = 6.5 MeV (199)

This is the same as the energy Sn required to separate one neutron from 236U. Since this energy
is larger than the fission barrier height VB = 6.2 MeV from Eq. (190) for the compound nucleus
236U, even a neutron with zero initial energy can cause 235U to immediately undergo fission [Fig.
31(a)]. In contrast, a neutron added to 238U to form 239U gains an energy

Sn
(

239U
)

=
[
M
(

238U
)
−M

(
239U

)]
c2 = 4.8 MeV (200)

This energy is ∼ 1.8 MeV less than the barrier height VB = 6.6 MeV of 239U from Eq. (190), so
neutrons bombarding 238U must have an energy greater than a threshold energy ∼ 1.8 MeV to
trigger fission [Fig. 31(b)]. The fundamental cause of this difference between 235U and 238U is the
pairing energy difference between even-even and even-odd nuclei. Using Eq. (19), whereas neutron
absorption changes the even-odd nucleus 235U to the even-even nucleus 236U and hence releases
an extra ∼ 0.6 MeV, it changes the even-even nucleus 238U to an even-odd nucleus 239U and thus
consumes ∼ 0.6 MeV. This accounts for most of the difference between neutron addition energies
in the two different uranium isotopes. Moreover, from Eq. (190), an even-even compound nucleus
like 236U has a fission barrier which is ∼ 0.4 MeV lower than that of an even-odd but otherwise
comparable nucleus, such as 239U.

With an extra pair of neutrons and an extra pair of protons, 239Pu closely resembles 235U. Sn ≈ 6.5
MeV is gained by adding a neutron to 239Pu, whereas the fission barrier for 240Pu is only VB = 6.0
MeV. Therefore 239Pu can also be fissioned by neutrons with essentially zero initial energy.

From Eq. (33) with a ∼ 5/MeV for heavy nuclei, exciting a uranium or plutonium nucleus by
Sn = 6.5 MeV yields an effective nuclear temperature of kBTnuc =

√
Sn/a ∼ 1.1 MeV. This

temperature of the initial excited nucleus is comparable to the ∼ 1.3 MeV temperature of the
resulting fission fragments as found from the prompt neutron energy spectrum [Eq. (177)].

Calculating neutron-induced fission cross sections for 235U and 239Pu requires several parameters.
As just shown, neutron absorption excites these nuclei by an energy Sn ≈ 6.5 MeV. Equation (37)
predicted that the average spacing between the energy levels of such highly excited nuclei is D ∼ 1
eV. This agrees with the measured values D = 0.6 eV for 235U+n and D = 2.3 eV for 239Pu+n.
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Figure 31. Neutron-induced fission. (a) Fission barrier height VB and neutron addition
energy Sn for 235U and 238U isotopes. (b) Neutron-induced fission cross section σfiss for 238U. (c)
Neutron-induced fission cross section σfiss for 233U, 235U, 239Pu, and 238U.

Fission cross sections depend on the initial neutron energy En. After gaining the absorption energy
Sn, a neutron with initial energy En ≈ 0 eV is at some random point between the excited energy
levels of the compound nucleus [Fig. 31(c) bottom center]. The first resonance that can be excited
by neutron absorption occurs at an initial neutron energy Er1 that is less than the spacing D
between adjacent levels (Er1 ≈ 0.29 eV for 235U and 239Pu). Additional resonances occur roughly
at multiples of D beyond that, at En ≈ Er1 + nD eV, where n is an integer. Of course, this is a
crude approximation, since D is only the average spacing and the actual spacing can vary somewhat
between different levels. It becomes difficult to resolve resonances at energies E > 100 eV because
their widths correspond to very small fractions of the bombarding neutron energy.
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Using Eq. (129), the width for the fission process is

Γf = Tf
D

2π
≈ D

2π
(201)

since the transmission probability through the fission barrier [Eq. (196)] is Tf ≈ 1 when the energy
is ∼ 0.3 MeV above the barrier. The quoted value of D ≈ 0.6 eV for 235U+n gives a fission width
Γf ≈ 0.1 eV. Using Eq. (128), the corresponding time τf required for fission is roughly

τf ≈
h̄

Γf
≈ 7× 10−15 sec (202)

This result confirms the fission time from Fig. 25. The fission time is ∼ 107 longer than the period
of an individual nucleon as found from Eq. (41), or ∼ 106 longer than the period for nuclear
vibrations from Eq. (188). Physically, the fission time is so long because it takes a while for the
energy of the added neutron to be redistributed within the nucleus in the right way to cause fission.

From Eq. (130), the transmission probability for a neutron entering or leaving the nucleus is

Tn ≈ 4
kn, outside

kn, inside
= 4

√
En, outside

En, inside
(203)

if the neutron’s energies outside and inside the nucleus are such that En, outside � En, inside.

Using Eqs. (129) and (203), the width for neutron emission or absorption is

Γn = Tn
D

2π
≈ 2

π
D

√
En, outside

En, inside
(204)

Note that Γn � Γf because En, outside � En, inside. When 235U or 239Pu absorbs a neutron, fission
is much more probable than re-emission of the neutron.

The fission cross section [Fig. 31(c)] is found from Eqs. (134), (201), and (204). The spin factor
Gs differs among the resonances but for simplicity is assumed to have a uniform value Gs ≈ 1/2.
Using E � Er and Er � Γf � Γn, the cross section in the energy range below the resonances is

σnf =
π

k2

∑
resonances

Gs
ΓnΓf

(E − Er)2 + 1
4(Γf + Γn)2

≈ π

k2

∑
resonances

Gs
ΓnΓf
E2
r

≈ π

k2

√
En, outside

En, inside

D2

2π2

[
1

E2
r1

+
1

(Er1 +D)2
+

1

(Er1 + 2D)2
+ ...

]

≈ 33D2√
Sn, MeV

√
En, eV

[
1

E2
r1

+
1

(Er1 +D)2
+

1

(Er1 + 2D)2
+ ...

]
barn (205)

Inserting Sn = 6.5 MeV, Er1 = 0.29 eV, and D = 0.6 eV (for 235U) or 2.3 eV (for 239Pu) yields

σnf ≈
85√
En, eV

barn for 235U σnf ≈
140√
En, eV

barn for 239Pu (206)

Fission cross sections are famed for being inversely proportional to the neutron velocity vn, σnf ∝
1/
√
En ∝ 1/vn. Physically, this just means that the reaction cross section is proportional to the

time a neutron spends near a nucleus. The constants in Eq. (206) are not actually constant but
rather may vary by ∼ 20% over the energy range. Of great importance for fission reactors are the
thermal (room-temperature, E = 0.025 eV) values, 584 barns for 235U and 742 barns for 239Pu.

Neglecting contributions from other resonances, Eq. (134) gives the cross section at a resonance
peak (E − Er = 0, with Gs ≈ 1/2, Γf � Γn, and Sn = 6.5 MeV for 235U+n and 239Pu+n):

(σnf )peaks =
π

k2
Gs

4ΓnΓf
(Γf + Γn)2

≈ 4
π

k2
gs

Γn
Γf
≈ 8

π

k2

√
En, outside

En, inside

≈ 5200√
Sn, MeV

√
En, eV

barn ≈ 2000√
En, eV

barn (207)
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Thus the resonance peaks also vary as 1/vn, although in reality there is some fluctuation around this
trend since different resonances may have somewhat different values of Gs and other parameters.

Above ∼ 100 eV the resonances tend to blur together, producing an average fission cross section
that may be found from Eqs. (135) and (204) with Gs ≈ 1/2, Γf � Γn, and Sn = 6.5 MeV:

〈σnf 〉 =
π

k2

〈
Gs

ΓaΓb
Γ

〉
2π

〈D〉
≈ π

k2
π
〈Γn〉
〈D〉

≈ 2
π

k2

√
En, outside

En, inside

≈ 1300√
Sn, MeV

√
En, eV

barn ≈ 500√
En, eV

barn (208)

Therefore the 1/vn variation continues up through higher and higher energies.

At very high energies, the quantum cross section π/k2 of the bombarding neutron becomes smaller
than the cross-sectional area πR2 of the nucleus. Using Eq. (125) and πR2 ≈ π(0.12)2A2/3 barns
≈ 1.7 barns for uranium and plutonium, this occurs at En ∼ 0.4 MeV. Above this energy, the cross
section no longer falls like 1/vn but instead hovers around 1-2 barns [Fig. 31(c)]. A giant resonance
increases the cross section by ∼ 20% around En = 2 MeV.

Another very high-energy phenomenon occurs when En+Sn exceeds multiples of the fission barrier
energy. When En+Sn > 2VB, the bombarding neutron can escape from the nucleus yet leave behind
enough energy to still cause the nucleus to undergo fission. Similarly, when En + Sn > 3VB, the
bombarding neutron and one other neutron can escape from the nucleus while still imparting enough
energy to trigger fission. First-chance fission is fission that occurs upon simple absorption of a
neutron, second-chance fission happens after absorption and re-emission of the neutron, third-
chance fission occurs after absorption of one neutron and emission of two, and so forth. At the
threshold for second-chance fission (∼ 7 MeV for 235U and 239Pu), the total fission cross section
becomes the sum of approximately equal cross sections (∼ πR2) for first- and second-chance fission
and therefore roughly doubles. The total fission cross section increases by a similar step size at the
threshold for third-chance fission (∼ 13 MeV for 235U and 239Pu).

Figure 31(b) shows the fission cross section for 238U. As noted previously, the threshold for first-
chance fission of 238U is around 1.4 MeV. At this point, the cross section smoothly rises to ∼ 0.5
barn, a value roughly comparable to but somewhat smaller than πR2 of the nucleus. Since this
energy is too high for resonance or 1/v effects, the cross section above the threshold is essentially
flat. However, the cross section does increase in stair steps of the value ∼ 0.5 barn at the thresholds
for second- and third-chance fission (6.5 and 14 MeV). Above this point, the input energies become
so large and so disruptive to the nucleus that the stairstep structure becomes more confused.

The neutrons that are produced by fission have very high energies (E ∼ 2 MeV), yet neutrons
with very low energies (E � 1 eV) have the highest cross sections for inducing 235U and 239Pu
fission. This mismatch makes it more difficult to produce a fission chain reaction, in which neutrons
from one fission induce other reactions, which then induce still more reactions. To overcome this
problem, most fission reactors mix uranium with a moderator material that slows down neutrons
but does not absorb them. Section 4.4 will examine the properties of moderators in more detail.
Fast reactors and fission bombs are designed to sustain chain reactions without a moderator,
simply relying on the ∼ 1− 2 barn fission cross sections at neutron energies of 1-2 MeV.

The energy for fission can also be provided by a charged particle or a gamma ray. For practical ap-
plications, however, these processes are much less important than neutron-induced fission, because
they require more energy and have smaller cross sections.
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4 Radiation Shielding

Different types of radiation–alpha particles and other nuclei, beta particles, gamma rays, and
neutrons–lose energy by different mechanisms when they pass through matter (Fig. 32). Analysis
of these mechanisms permits one to calculate the range of radiation in shielding materials [1, 2, 9].

(a)  Alpha particles (4He nuclei) (b)  Beta particles (electrons/positrons) 
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Figure 32. Energy loss by (a) alpha particles, (b) beta particles, (c) gamma rays, and
(d) neutrons passing through matter.

4.1 Alpha Particles and Other Nuclei

Energetic nuclei such as protons, alpha particles, and fission fragments are slowed by their interac-
tions with electrons in matter. As shown in Fig. 33, a nucleus with charge z and velocity v passing
by an electron with impact parameter b exerts a sidewise force F on the electron for a time ∆t:

F ≈ ze2

4πεob2
for ∆t ≈ 2b

v
(209)

In that interaction, the nucleus transfers to the electron a momentum ∆p and energy ∆E:

∆p ≈ F ∆t ≈ ze2

2πεovb
=⇒ ∆E =

(∆p)2

2me
≈ z2e4

8π2ε2omev2b2
(210)

Collisions with nuclei of mass Mi instead of electrons in the shielding material would have a factor
of Mi in place of me in the denominator of ∆E in Eq. (210), so their effect is negligible.



Nuclear Physics 69

b 
v z 

F 

Electron 
Nucleus 

Δt 

e- 

Figure 33. Energy loss by charged particles. An energetic nucleus with charge z and velocity
v passing by an electron with impact parameter b exerts a sideways force F on the electron for time
∆t. The change in the nucleus’s trajectory is negligible, due to its far greater mass.

Shielding material with atomic number Z and N atoms per volume has NZ electrons per volume.
The energy lost per path length by a high-energy nucleus interacting with all these electrons is

− dE

dx
= NZ

∫ bmax

bmin

∆E 2πb db ≈ z2e4NZ

4πε2omev2

∫ bmax

bmin

db

b
≈ z2e4NZ

4πε2omev2
ln

(
bmax

bmin

)
(211)

The minimum impact parameter at which such interactions can occur is determined by the Heisen-
berg uncertainty relation (∆x)(∆p) ∼ h̄ and the maximum relativistic momentum pmax = γmev
that could be imparted (where γ ≡ (1− v2/c2)−1/2 from Classical Mechanics ?.?):

bmin ≈
h̄

(∆p)max
≈ h̄

γmev
(212)

As the impact parameter increases, the transferred energy becomes smaller and smaller. The
maximum impact parameter occurs when this energy is just enough to successfully ionize an orbital
electron from an atom of shielding material, (∆E)min = I, where the minimum ionization energy
of an atom is typically I ∼ 10Z eV. Using the other Heisenberg relation, (∆t)(∆E) ∼ h̄, this
minimum energy may be related to the maximum effective collision time (∆t)max ∼ bmax/(γv)
(which includes relativistic time dilation by the factor γ):

(∆t)max ≈
bmax

γv
=

h̄

∆Emin
=

h̄

I
=⇒ bmax ≈

h̄γv

I
(213)

Inserting Eqs. (212) and (213) into Eq. (211) yields

− dE

dx
=

z2e4NZ

4πε2omev2
ln

(
γ2mev

2

I

)
(214)

More detailed calculations modify Eq. (214) somewhat [1, 9], with β ≡ v/c:

− dE

dx
=

z2e4NZ

4πε2omev2

[
ln

(
2γ2mev

2

I

)
− β2

]
Bethe formula for slowing

of energetic nuclei
(215)

Equation (215) breaks down at low energies when the now slowly moving nucleus begins to capture
electrons that shield part of its charge. Neglecting this and relativistic effects for E � mic

2,
defining L ≡ ln(2γ2mev

2/I)− β2 ≈ ln(2mev
2/I), and integrating using Eq. (215), the total range

of an energetic nucleus is

x =

∫ E

0

dx

dE
dE =

8πε2ome

z2e4NZmi

∫ E

0

E dE

L
≈ 4πε2omeE

2

z2e4NZ 〈L〉mi
, (216)
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utilizing a representative value 〈L〉. In a typical solid with a density on the order of Avogadro’s
number N ∼ NA ∼ 6 × 1023 atoms/cm3, Eq. (216) shows that α particles have a range on the
order of microns, depending on the precise values of E, Z, and 〈L〉. Even in air their range is only
centimeters. It is much easier to shield against α particles than other forms of radiation.

The range is proportional to mi/z
2, so a proton has the same range as an alpha particle when their

velocities are equal, or when the proton’s energy E = miv
2/2 is 1/4 of the alpha particle’s energy.

Also, for comparable atomic densities N , x ∝ 1/Z due to the increased number of electrons.

Fission fragments begin with very high z ∼ 30 and E ∼ 70 MeV and have ∼ 1/2 the range of
5-MeV α particles. As the fragments acquire electrons, z drops so rapidly that −dE/dx from Eq.
(215) actually decreases as the fragments slow, despite the energy loss’s 1/v2 dependence.

4.2 Beta Particles

Like energetic nuclei, beta particles are slowed by collisions with electrons. However, the Bethe Eq.
(215) is modified because the incident and target particle masses are now the same [9]:(

− dE

dx

)
col

=
e4NZ

8πε2omev2

[
ln

(
γ2mev

2E

2I2

)
− ln 2

γ

(
2− 1

γ

)
+

1

γ2
+

1

8

(
1− 1

γ

)2
]

(217)

Beta particles also lose energy by a second mechanism, bremsstrahlung radiation. The power lost
due to bremsstrahlung by an electron moving through an ion population is (Plasma Physics 1.3):(

− dE

dt

)
rad

≈ Z2e6N

24π2ε3oc
3m2

ebmin
(218)

For relativistic electrons, the minimum impact parameter (including γ = E/mec
2) is

bmin =
2h̄

γmev
=

mec
2

E

2h̄

mev
(219)

Using Eqs. (218) and (219), the energy loss per length due to bremsstrahlung radiation is(
− dE

dx

)
rad

=
1

v

(
− dE

dt

)
rad
≈ Z2Ne6E

48π2ε3oc
5m2

eh̄
≈ 4αfsr

2
eZ

2NE (220)

Because the bremsstrahlung loss varies like ∼ 1/m2 with the mass of the energetic particle, it is
far smaller for energetic nuclei and hence was safely neglected in Section 4.1.

More precise calculations of bremsstrahlung [9] modify Eq. (220) to yield(
− dE

dx

)
rad

≈ 4αfsr
2
eZ

2NE

[
ln

(
2E

mec2

)
− 1

3

]
(221)

Writing Eq. (221) as (−dE/dx)rad = NEσbrem, the bremsstrahlung cross section is

σbrem ≈ 4αfsr
2
eZ

2
[
ln

(
2E

mec2

)
− 1

3

]
(222)

The ratio of radiative to collisional losses from Eqs. (221) and (217) is

(dE/dx)rad

(dE/dx)col
≈ EZ

mec2

2

π
αfs

ln(2E/mec
2)

ln(E3/2I2mec2)
≈ EMeVZ

700
, (223)

using the logarithm ratio ∼ 1/7 for typical E (∼ 5 MeV) and I (∼ 500 eV for Z ∼ 50). Thus
bremsstrahlung is negligible compared to collisional losses unless both E and Z are very large. (In-
deed, bremsstrahlung X-ray generators impact a high-energy electron beam on a high-Z material.)
A third energy loss mechanism, Cerenkov radiation, is even smaller (Electromagnetism ?.?).

By expressing Eq. (217) as (−dE/dx)col ∼ E/x and using N ∼ NA, v ≈ c, and ∼ 20 as a
representative value for the term in brackets, the characteristic range x of beta particles in a solid
is ∼ 3EMeV/Z mm, or on the order of a millimeter for typical energies and atomic numbers.
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4.3 Gamma Rays

Gamma rays are absorbed or scattered in matter by three different mechanisms, depending on the
energy Eγ of the gamma rays: the photoelectric effect, Compton scattering, and pair production.

The photoelectric effect predominates at low energies (Eγ less than ∼ 0.5 MeV or so, depending
on the Z of the matter). It occurs when a gamma ray is absorbed by an atomic electron, which uses
the excess of Eγ over its own binding energy to escape the atom. For conservation of momentum,
the electron must be initially bound to an atom, so this effect generally occurs with the innermost
atomic electrons, which are most tightly bound. The innermost K-shell (1s) electrons of an atom
have orbital radius r = rBohr/Z [using Eq. (164)] and binding energy E = Z2EBohr [using Eq.
(163)]. Physically, one would expect the photoelectric absorption cross section to vary like σphoto ∼
2πr2αfsf(E/Eγ). This result includes a factor of 2 for the two K-shell electrons, πr2 for the cross
section of the electron orbit, αfs for the coupling of the photon to the electron, and some function
f(EBohr/Eγ) that decreases at high photon energies where the electrons seem less tightly bound
by comparison. Detailed calculations of the cross section per atom [8] confirm this intuition:

σphoto ≈
28

3
πr2 αfs

(
E

Eγ

)7/2

=
28

3
πr2

Bohr αfs Z
5

(
EBohr

Eγ

)7/2

≈ 5.5× 107 Z5

(
13.6 eV

Eγ

)7/2

b (224)

As shown in Fig. 34(a), the measured cross section σphoto(Eγ) jumps when Eγ increases past the
binding energy En = 13.6 eV (Z − screening)2/n2 of each atomic electron shell, producing edges
named for each shell: the K edge, L edge, etc. Because the electron must appear tightly bound
relative to the photon energy, the dominant shell is usually the innermost shell whose energy is
accessible with Eγ , and the photoelectric effect becomes negligible for Eγ � EK−shell = 13.6Z2 eV.
Lower-energy X-rays (fluorescence) are produced just after photoelectric absorption when a higher
atomic electron falls into the vacant state, but such X-rays are usually absorbed near their point of
origin. Sometimes the electrons in several different shells play musical chairs to decide which one
will actually be ejected by the photoelectric effect, a process called Auger emission.

Compton scattering is dominant at medium energies (Eγ between ∼ 0.5 MeV and ∼ 10 MeV
or so, depending on Z). In Compton scattering, the gamma ray scatters off a nearly free electron,
traveling off in a new direction and leaving a bit of its energy with the electron. An atom’s outer
electrons, whose binding energies are negligible compared to Eγ , are thus more important than
inner electrons for Compton scattering, in contrast to the situation for the photoelectric effect.
Relativistic Quantum Field Theory 2.2.1 discusses Compton scattering in detail and calculates the
cross section per electron. Assuming Z electrons per atom, the cross section per atom is:

σCompton ∼ Zπr2
e

mec
2

Eγ
(225)

Pair production, in which a gamma ray splits into an electron and a positron, predominates
at high energies (Eγ above ∼ 10 MeV or so, depending on Z). The Coulomb field of a nucleus
facilitates this process, and the recoil of the nucleus allows momentum to be conserved. Neglecting
the very small amount of energy imparted to the nucleus, the gamma ray energy is converted
into kinetic and rest energy of the electron-positron pair: Eγ = KEe− + KEe+ + 2mec

2. Thus
pair production requires a gamma ray energy Eγ > 2mec

2 = 1.022 MeV. The produced positron
subsequently annihilates with a nearby electron, producing two ∼ 511 keV photons.
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Figure 34. Energy loss by gamma rays. (a) The photoelectric cross section σphoto vs. gamma
ray energy Eγ for lead. (b) Pair production is closely related to bremsstrahlung. (c) Plot of
shielding material Z vs. gamma ray energy Eγ , showing the regimes in which the photoelectric
effect, Compton scattering, and pair production predominate.

Figure 34(b) shows that pair production (γ → e− + e+) is closely related to the bremsstrahlung
process (e− → e−+ γ). Thus one would expect the pair production cross section to be comparable
to the bremsstrahlung cross section from Eq. (222). Indeed, detailed calculations [8] give

σpair ≈
28

9
αfsr

2
eZ

2
[
ln

(
2Eγ
mec2

)
− 109

42

]
(226)

Using Eqs. (224) and (225), one can find the values of Z and Eγ at which σphoto ≈ σCompton:

Z ≈
[

3

28

(
re

rBohr

)2 1

αfs

mec
2

E
7/2
Bohr

]1/4

E5/8
γ ≈ 100 E

5/8
γ, MeV (227)
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Similarly, Eqs. (225) and (226) show that σCompton ≈ σpair when

Z ∼ π

αfs

mec
2

Eγ
∼ 200

Eγ, MeV
(228)

Figure 34(c) uses Eqs. (227) and (228) to plot Z vs. Eγ , showing the regions in which the
photoelectric effect, Compton scattering, and pair production predominate.

Unlike other forms of radiation, gamma rays are attenuated by losing actual particles, not just
energy per particle. Photons are absorbed or scattered out of the beam by the above processes,
causing exponential attenuation of the intensity of a beam of gamma rays passing through matter:

I = Ioe
−µx , where µ ≡ N(σphoto + σCompton + σpair) (229)

For example, for 5-MeV gamma rays, Compton scattering predominates and has a cross section
σCompton ∼ Zπr2

e/10 ∼ 2.5×10−26Z cm2. In a typical solid with ∼ NA ∼ 6×1023 nuclei/cm3, such
gamma rays have an effective path length of ∼ 70/Z cm. Therefore the characteristic path length
of gamma rays is of the order of 10 cm in typical low-Z materials. Because of the Z-dependence of
σphoto, σCompton, and σpair, high-Z materials provide the best shielding from γ rays.

4.4 Neutrons

Neutrons only interact with nuclei in matter. Such interactions can include:

• Inelastic scattering. Neutrons with enough energy to excite nuclei (∼ 1 MeV or more)
can be inelastically scattered by nuclei in matter, with the excitation energy generally being
emitted as gamma rays when the nuclei return to their ground states.

• Elastic scattering. Neutrons of any energy can be elastically scattered by nuclei. In the
lab frame in which a neutron strikes a nucleus that is initially at rest, part of the neutron’s
initial kinetic energy is transferred to the nucleus. Lower-mass nuclei have less inertia and
therefore absorb more of the neutron’s energy, reducing or moderating the neutron energy
and sometimes leading to recoil nuclei with enough kinetic energy to constitute secondary
radiation of heavy charged particles. Low-mass nuclei that do not readily absorb neutrons
(such as deuterium and 12C) are used as moderators to slow neutrons inside fission reactors.
After many collisions, the neutrons are slowed until their average kinetic energy is the same as
the thermal energy∼ kBT of the surrounding matter, or .025 eV for room temperature matter.
Thermal neutrons that have reached this state are in equilibrium with their surroundings
and on average do not lose additional energy from further collisions. In addition to slowing
neutrons down, collisions scatter the neutrons, leading to spatial diffusion.

• Neutron absorption. Certain slightly neutron-deficient nuclei such as 10B and 110Cd readily
absorb neutrons, becoming heavier isotopes and emitting the excess energy as gamma rays.
Such nuclei are useful for neutron shielding or absorbing excess neutrons in fission reactors.

• Nuclear reactions. As discussed in Section 3.3, neutrons within a certain energy range can
trigger fission or other reactions when they strike certain nuclei.

In a typical solid with NA ∼ 6 × 1023 nuclei/cm3 and a σ ∼ 1 barn = 1024 cm2 cross section for
neutron absorption or scattering, neutrons travel ∼ 1/NAσ ∼ 60 cm. Like γ rays, neutrons are
uncharged and thus penetrate further than charged particles in matter.

Fission Power gives more information on neutron scattering, absorption, and reactions.
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5 Radiation Detection
Nuclear physics experiments and applications frequently require the detection of high-energy par-
ticles or electromagnetic radiation. It is convenient to categorize sensors according to whether they
detect radiation via electrical signals, light emission, particle tracks, or other techniques [1, 2, 9].
Figure 35 shows various types of radiation detectors.

Figure 35. Examples of radiation detectors. (a) Geiger-Müller detector. (b) Dosimeter. (c)
Scintillator. (d) Spinthariscope. (e) Cloud chamber.
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5.1 Detection via Electrical Signals

Radiation can be detected via the electrical signals it produces in gas-filled high-voltage tubes
[categorized in order of increasing voltage: ionization chambers, proportional counters, and Geiger-
Müller counters–see Figs. 35(a) and 36] or semiconductor junction diodes.
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Figure 36. Operating regimes of ionization chambers, proportional counters, and
Geiger-Müller counters. The higher the applied voltage in a gas-filled chamber, the larger the
electrical pulse that is generated by a passing charged particle. Ionization chambers operate at a
low voltage where the pulse height is proportional to the energy absorbed from the charged particle
(e.g, E1 and E2). Geiger-Müller counters operate at a high voltage where particles of different
energies produce the same pulse height. Proportional counters operate in an intermediate regime.

Ionization chambers have a ∼ 100 V/cm electric field between an anode and cathode. Energy
lost by passing radiation ionizes gas atoms in the chamber (Sections 4.1-4.2). For example, 1 MeV
can create ∼ 30, 000 electron-ion pairs in air (34 eV per pair). In the applied electric field, the
electrons drift to the anode within ∼ 10 µsec, creating an electric current proportional to the
radiation energy loss in the chamber, although individual radiation counts may be too small to
detect. Because of their large mass, the ions drift much more slowly than the electrons and can
be neglected. Though neutrons do not directly cause ionization, slow neutrons can be detected
via triple α decay of 11B in BF3 gas, while fast neutrons can be detected via the recoil protons
they strike in H2 gas. Alternatively, slow or fast neutrons can be detected via fission in 235U- or
238U-coated electrodes, respectively. Electroscopes are simple ionization chambers in which the
output is read visually via an electrostatically charged filament that moves as radiation-generated
electrons neutralize its charge. Pen-sized electroscopes are especially useful as dosimeters for
measuring a person’s radiation exposure [Fig. 35(b)].
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Proportional counters have a ∼ 1000 V/cm field that accelerates radiation-induced electrons,
which strike atoms and create additional electrons, a process called a Townsend avalanche. The
measured current is proportional to the number of secondary electrons, which depends on the
number of primary electrons, so the output is still proportional to the energy deposited by the
radiation. However, the signal amplification of ∼ 103 − 106 allows proportional counters to easily
detect individual events. The ∼ 1 µsec response time reflects the drift time from the primary event
to the high-field region near the anode wire. Proportional counters can have either a single anode
wire [Fig. 37(a)] or many wires to obtain spatial information [Fig. 37(b)].
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Figure 37. Proportional counters. (a) Radiation passing through a cylindrical proportional
counter frees some electrons from the gas; the electrons are accelerated toward the anode wire,
exciting and freeing more electrons as they go, generating a measurable electrical discharge to the
anode. (b) Radiation passing through a multiwire proportional counter generates a measurable
electrical signal on the nearest wire, so the approximate location of the radiation can be determined.

Geiger-Müller counters [Fig. 35(a)] have an even higher electric field, so that collision-generated
photons spread the electron avalanche to the entire tube of gas. This provides a signal amplification
of ∼ 1010 but no information on the deposited radiation energy. As in proportional counters, the
response time is ∼ 1 µ sec. Typically the gas is ∼ 90% argon with ∼ 10% ethanol added as a
quencher gas to prevent the discharge from continuing indefinitely [9], so there is a ∼ 100 µsec dead
time after a pulse before another event can be detected. Using high-Z tube walls permits X-ray
detection with ∼ 1% efficiency via electrons ejected from the walls. Surrounding a Geiger-Müller
tube with paraffin allows detection of neutrons of any energy via recoil protons from the paraffin.

Junction diodes make much more compact detectors, due to the shorter radiation ranges in
solids versus gases. Radiation can create an electron-hole pair in the depletion region or junction
between the n- and p-doped regions of a diode. Only ∼ 3 eV is required to create a charge pair, so
∼ 10x more charges are created for a given energy than in a gas-filled detector. A ∼ 1−3 kV reverse
bias is generally applied to the diode to separate the electrons and holes and also to maximize the
size of the radiation-sensitive depletion region. As with ionization and proportional counters, the
induced electric current is proportional to the energy deposited by the radiation. Semiconductor
Devices ?.? gives more information on diode designs for detectors.



Nuclear Physics 77

5.2 Detection via Light Emission

Both scintillators and Cerenkov counters use light emission to detect radiation.

Scintillators [Fig. 35(c)] emit light via fluorescence (Solid State Physics 5.2). Electrons in scin-
tillator materials have a ground or valence state, an excited or conduction state with energy Ee
relative to the ground state, and an intermediate or activator state with energy Ea (Fig. 38).
The ground state is well populated and the other states have populations ∼ exp(−Ee/kBT ) or
∼ exp(−Ea/kBT ) that are virtually zero since their energies (∼eV) are much larger than room-
temperature thermal energy kBT ∼ 0.025 eV. Energy lost by a charged particle (Sections 4.1 and
4.2) can boost an electron from the ground to the excited state [Fig. 38(a)]. When the electron
falls back from the excited state, it emits a photon. If there were no activator state, the electron
would drop directly to the ground state, emitting a photon of energy Ee. Since this photon energy
can boost any of the ground state electrons up to the excited state, the photon would be rapidly
absorbed within the scintillator instead of escaping to be detected. With an activator state present,
an electron can drop from the excited to the activator state, emitting a photon with energy Ee−Ea
[Fig 38(b)] that cannot boost electrons from the populated ground state and hence is not reab-
sorbed within the scintillator. The excited electron ultimately decays from the activator to the
ground state.
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Figure 38. Scintillator energy levels. (a) Energy Ee lost by a passing particle can boost
an electron from the populated ground state to the unpopulated excited state. (b) The excited
electron falls to the activator state, emitting a photon of energy Ee−Ea that cannot be reabsorbed
within the scintillator, and the electron later drops back to the ground state. (c) In an organic
scintillator, molecular vibrations split the electronic ground and excited states into many closely
spaced levels, some of which can serve as activator states.

An important class of scintillators is inorganic insulators, especially alkali halides like NaI and ZnS.
As insulators, these materials have a large band gap (∼ 4 eV) between the conduction and valence
band states. To create activator states, thallium or silver impurities are added, denoted as NaI(Tl)
and ZnS(Ag). NaI(Tl) is excited by Ee = 4.10 eV (a photon wavelength of 303 nm) and emits
photons with Ee−Ea = 3.02 eV (410 nm). To prevent reflection or absorption at crystal faces, large
single crystals are used. NaI readily absorbs water vapor from the air, changing from a transparent
crystal to an opaque powder, so it must be kept sealed.
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Another class of scintillators is organic molecules with vibration levels as in Fig. 38(c). Several
“ground states” are ∼ 0.1 eV apart, while excited states are ∼ 0.1 eV apart from each other but a
few eV higher than the ground states. Some of the electrons do not participate much in bonding
and can be excited to these higher states. The upper ground states function as an activator state,
making the peak absorption and emission energies different. Organic scintillator materials include
anthracene, benzene-like liquids, and plastics (which are especially convenient).

A photomultiplier tube or PMT (Optics and Quantum Electronics ?.?) can be placed next to a
scintillator or connected to it via a light pipe. A good PMT can detect a particle that loses as little
as 4 keV in a scintillator. PMTs generally work better with visible light than ultraviolet light.

Some old watches used a mixture of ZnS(Ag) and radium as luminous if somewhat dangerous paint.
Similarly, a spinthariscope is a low-power optical microscope focused on a screen containing
ZnS(Ag) and an alpha emitter, permitting one to observe flashes of light from each decay [Fig.
35(d)].

The scintillation pulse, height, and material can indicate a particle’s type and energy. Scintillators
can detect gamma rays indirectly via the energetic Compton electrons they produce. High-Z ma-
terials are especially conducive for this purpose (Section 4.3) and iodine has Z = 53, so NaI is a
good scintillator for gamma ray detection. By adding Cd or B to a scintillator, neutrons can be
detected via scintillation light produced by energetic recoil nuclei.

Cerenkov counters measure electromagnetic Cerenkov radiation, which is emitted when a charged
particle’s velocity v exceeds the speed of light c/n in a medium with index of refraction n. Cerenkov
radiation is the optical equivalent of a sonic boom and is emitted at an angle cos θ = 1/nβ relative
to the particle’s trajectory (Electromagnetism ?.?). Although Cerenkov radiation is ∼ 100x weaker
in the visible spectrum than scintillation light, its emission angle is useful for measuring the velocity
of charged particles traveling in a particular direction. A CO2 chamber with variable temperature
25-50oC and pressure 1-200 atm can achieve n = 1.0004− 1.21 for this purpose.

5.3 Detection via Particle Tracks

Several detection methods involve observing the physical tracks left by radiation passing through
suitable media, including certain solids, photographic film, cloud chambers, and bubble chambers.

Solids. Massive, high-energy, high-Z ionizing particles like fission fragments and other energetic
nuclei can leave tracks in solid materials that are electrical insulators. An ionizing particle can
destroy the lattice in a crystalline solid, creating a microscopic hole along its path. In amorphous
solids like plastics, an ionizing particle can leave a track by breaking polymer chains or creating
chemically reactive molecules. This technique is especially useful for dating rocks or meteorites by
microscopically counting the number of tracks left by fission fragments from spontaneous fission of
certain impurities and considering the half life and initial amount of those impurities.
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Photographic film is the oldest radiation detection method, dating back to Becquerel in 1896.
Because the blackening of film is proportional to the product of the radiation intensity and expo-
sure time, radiation workers can wear film badges to monitor their cumulative personal exposure.
Stacked layers of film with a high density of silver bromide can be used to trace individual particle
tracks through the layers. The particle energy loss |dE/dx| from Section 4 can be measured since
higher values yield more developable grains per length, up to some saturation value |dE/dx|sat.
Likewise, the range of a track can be related to the particle type and initial energy as described
in Section 4. Several additions can also be made to film-based detectors for special purposes: a
reinforcing screen that emits secondary light or electrons in response to the primary radiation,
shielding material that blocks radiation of certain types or energies, or impurities such as boron,
bismuth, or uranium that enhance or reduce the response to particular types of radiation.

Cloud chambers [Fig. 35(e)] contain a vapor that is supersaturated, or on the verge of con-
densing into droplets. A charged particle passing through the chamber leaves a visible trail of
condensed droplets momentarily suspended in space. By observing the curvature of the trails in
an applied ∼ 1 − 5 Tesla magnetic field, one can measure the momentum of the particles. Con-
tinuous cloud chambers create a vertical temperature gradient between a heated top and a cold
bottom containing dry ice; the mixture of gas and vapor (usually air and alcohol) in the chamber
is supersaturated within some temperature layer. An intense (e.g., xenon) light is often used to
visualize the droplet trails, especially against a black background. Intermittent cloud chambers
use adiabatic expansion with a piston to cool a gas, creating a supersaturated vapor for ∼ 0.1 sec
after the expansion. Cloud chambers of either type can be cleared of old tracks using an electric
field, and stereo photographs are helpful to document and reconstruct all the tracks.

Bubble chambers, in contrast, contain a liquid (hydrogen, deuterium, freon, propane, etc.) on
the verge of boiling, so a passing charged particle leaves a visible trail of bubbles. Because the
material is much denser than in a cloud chamber, it can absorb more of a particle’s energy, enabling
clearer signals and more accurate measurements. Advantages over film include simpler material
composition and reusability. Typically the liquid is decompressed within ∼ 10 msec, lowering its
boiling point close to the actual temperature, intense lights flash ∼ 1 msec later to visualize particle
tracks, and then the liquid is recompressed, all within a ∼ 1 sec cycle. As with a cloud chamber,
stereo photographs are commonly taken, and particles can be analyzed by their range and track
curvature in a magnetic field. Bubble chambers with diameters of ∼ 3 − 4 m are used to identify
the products of particle collisions at major accelerators like CERN and Fermilab.
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5.4 Miscellaneous Detection Methods

Polarimeters measure the polarization of particle spins. The polarization of nucleons can be
assessed from their interactions with a spinless target such as 4He. The polarization of electrons
can be found by scattering them off a polarized electron target (e.g., a magnetic material); the
Pauli principle suppresses scattering of parallel spins relative to antiparallel spins by over a factor
of 10. Gamma ray polarization can be determined by Compton scattering off a polarized electron
target, since the scattering angle depends on the polarization of the photons and electrons.

Spectrometers measure the energy of particles. An applied magnetic field bends the trajectory of
charged particles, with lower-energy particles having more curvature than higher-energy particles
(Plasma Physics and Fusion 1.4). Figure 39(a) shows a magnetic spectrometer that gives the
best energy resolution for charged particles. Particles from a source are bent by a magnetic field
and impact different areas of a detector array or photographic film depending on their energy.
On the other hand, the magnetic lens spectrometer in Fig. 39(b) has the best luminosity, since
particles emitted over a wide range of angles from the source converge on the detector if they have
the appropriate energy. Gamma rays with energies greater than 2mec

2 can be analyzed by using
a magnetic spectrometer to measure the energies of electrons and positrons they create via pair
production. Gamma rays of lower energy can be analyzed by measuring their Bragg scattering
angle from calcite or other crystals (Electromagnetism ?.?).
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Figure 39. Magnetic spectrometers for charged particles. (a) The best energy resolution
is achieved by letting particles from a source curve around a perpendicular magnetic field B and
impact on a detector array or film. A particle’s energy affects its trajectory’s curvature and hence
the impact location on the detector. (b) The best luminosity is achieved by using an axial magnetic
field to focus all particles of a certain energy onto a detector. Particles of other energies do not have
the correct curvature to reach the detector. The magnetic field can be varied to detect different
energies.

Detector arrays can form images from X or gamma rays. Semiconductor arrays are replacing
film for X-ray imaging (Semiconductor Devices ?.?). For gamma rays, a gamma camera chan-
nels radiation through holes in a lead screen to a scintillator plate, behind which is an array of
photomultiplier tubes (Fig. 40).
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Figure 40. Gamma camera. Gamma rays traveling in the appropriate direction pass through
the lead collimator channels and enter a scintillator plate, where they produce secondary photons
that are detected by the nearest photomultiplier tubes in a two-dimensional array.

Large-volume detector 
Thin 

scintillator 

Particle 
trajectory 

Eresidual ΔE1 ΔE2 

Thin 
scintillator 

Time of flight 
indicates velocity 

Figure 41. Counter telescope for identifying particles. The particles’ energy is found by
summing the energy losses, E = ∆E1 + ∆E2 +Eresidual, and their velocity can be determined from
the time of flight between the two thin scintillators. The particles’ mass can be found using their
energy and velocity, while their charge can be determined by the energy loss rate in the detectors.

Counter telescopes are a series of detectors and are especially useful for identifying particles. For
example, Fig. 41 shows a counter telescope composed of two thin detectors (such as thin plastic
scintillators) followed by a large detector such as a large-volume scintillator. Particles lose relatively
small amounts of energy ∆E1 and ∆E2 in the two thin detectors before expending their remaining
energy in the large detector. The three energy depositions and the time-of-flight between the two
thin detectors provide a great deal of information on the particles. Coincident signals in all three
detectors are measured relative to uncorrelated background noise.
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6 Some Applications of Nuclear Physics
This section will cover applications of nuclear physics to medicine and materials analysis. Appli-
cations to fission and fusion power are treated in separate summaries.

6.1 Radiation Units and Medical Effects

First we will consider the units for measuring radiation and the medical effects of different amounts
of radiation. The quantities can be expressed in either the old units that were used in the early
days of nuclear physics or the newer metric units [1, 2, 9, 10].

The activity of a radioactive source indicates the number of nuclear decays per second. The new
unit of activity is the Becquerel (Bq), equivalent to one decay per second. Originally activity was
expressed in terms of the Curie (Ci), the activity of 1 gram of 226Ra, approximately 3.7× 1010 Bq.
Eventually the activity of a radioactive source goes to zero as the nuclei decay to stable forms.
However, before ultimately decreasing, the activity may actually increase initially if the daughter
products of the primary decay are themselves radioactive.

The exposure indicates the ionization that radiation creates within a given mass of air, including
secondary charged particles. The new unit is simply Coulombs/kg. The old unit, the Roentgen
(R), is 1 esu of charge per cm3 of air at standard temperature and pressure (STP). One Roentgen
is equivalent to 2.58× 10−4 C/kg or 2.08× 109 charges/cm3 of STP air.

The absorbed dose is the energy that radiation deposits within a given mass of material, or the
energy density deposited per mass density. It is usually applied to biological organisms or tissues.
The new unit, the Gray (Gy), is one J/kg. The old unit, the rad (radiation absorbed dose), is 100
erg/g or 0.01 Gy. Assuming one charge per ion and an average energy of 34 eV to produce an ion
in air, 1 R = 0.88 rad, so Roentgens and rads are roughly equivalent.

Radiation generally damages biological material by ionizing molecules within the material, creating
free radicals with unpaired electrons (like H· or OH·) that undergo destructive chemical reactions
with DNA and other essential cellular components. The degree of biological damage depends on
the specific type of radiation as well as the absorbed dose. Radiation that deposits its energy over
a short path length (such as alpha particles) does more damage within each cell than radiation
that gradually loses energy over a long path length (like gamma rays), depositing very little energy
within any given cell. The relative destructiveness is taken into account by assigning a weighting
factor WR to different types of radiation:

WR = 1 for X, γ, β, and muon radiation 5 for < 10 keV neutrons
2 for < 2 MeV protons 10 for 10-100 keV neutrons
5 for > 2 MeV protons 20 for 100 keV-2 MeV neutrons

20 for alpha particles 10 for 2-20 MeV neutrons
5 for > 20 MeV neutrons

The equivalent dose, the absorbed dose multiplied by the weighting factor WR, is a measure of
the biological damage done by the radiation. If the absorbed dose is in Grays, the equivalent dose
is then in Sieverts (Sv). In older units, if the absorbed dose is in rads, the equivalent dose is in rem
(Roentgen equivalent in man), where 1 rem = 0.01 Sv. In practice, the Sv is so large that radiation
doses typically get measured in milli-Sievert (mSv) or even smaller units. The convenient thing
about the older unit, the rem, is that it is smaller and therefore closer to typical doses.

Sometimes these definitions are carried even further to calculate an effective dose, which takes
into account not only the weighting factor for different radiation types but also a weighting factor
for the different radiation sensitivities of various organs and tissues.
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Table 2 lists the typical annual doses from various radiation sources. At 4 km altitude where there
is less atmosphere to screen out cosmic rays, the cosmic ray dose can be up to 10 times higher than
the sea level value, so living in the mountains or flying a great deal increases the dose. Potassium is
an essential nutrient, and ∼ 1.2× 10−4 of natural potassium is 40K, a beta emitter with a half-life
of 1.85 billion years that contributes roughly half the dose from all ingested radionuclei. Depending
on the local geology and building materials, γ rays from rocks (particularly granite) can give a
sizeable dose. Gaseous alpha-emitting radon isotopes from the decay of 233Th and uranium inside
the earth can seep into basements and add a significant dose to the lungs. The total annual dose
from these factors is ∼ 2− 3 mSv = 0.2-0.3 rem. In the U.S., the recommended maximum annual
dose is 5 mSv = 0.5 rem for the general public and 50 mSv = 5 rem for radiation workers.

Radiation source New units Old units

Cosmic rays (at sea level) 0.25 mSv 25 mrem
Ingested 40K 0.17 mSv 17 mrem
Other radionuclei in body ∼ 0.2 mSv 20 mrem
γ rays from rocks ∼ 0.2− 0.4 mSv 20-40 mrem
Radon gas ∼ 1 mSv ∼ 100 mrem
Medical X-rays ∼ 0.5 mSv ∼ 50 mrem
Nuclear power and weapons tests < 0.005 mSv < 0.5 mrem

Total 2-3 mSv 0.2-0.3 rem

Table 2. Typical annual radiation dose for general public.

Either cumulative or acute (short-term intense) radiation can cause biological damage. Radiation-
induced mutations in proto-oncogenes or tumor suppressor genes can make cells cancerous; the
lifetime risk of fatal cancer from cumulative radiation exposure increases by ∼ 0.05/Sv = 5 ×
10−4/rem. For example, a person exposed to 0.3 rem/year for 75 years has a ∼ 1% chance of fatal
cancer, not including the effects of chemical carcinogens, oncogenic viruses, or inherited oncogenic
mutations. Acute radiation doses can damage DNA enough to kill cells or trigger apoptosis (cell
suicide). Rapidly dividing cells such as those in Table 3 are more sensitive to radiation-induced
DNA damage than other cells in the body. Whole-body doses over ∼ 3 Sv = 300 rem are generally
fatal unless there is intensive medical treatment such as transfusions, antibiotics, and bone marrow
transplants. Antioxidants like sulfhydryl compounds minimize free radical formation and therefore
increase resistance to acute radiation doses, but they have only been used experimentally.

Tissue type New units Old units Effects

White blood cells 0.5 Sv 50 rem Weakened immune response for several days

Gastrointestinal 1 Sv 100 rem Vomiting within hours
tract lining 4 Sv 400 rem GI tract bacteria released into bloodstream

Bone marrow 2 Sv 200 rem Fatigue and anemia (no red blood cells produced)
No immune system (no white blood cells produced)

Ovaries/testes < 1 Sv < 100 rem Mutations in offspring
3 Sv 300 rem Sterility

Fetus < 0.25 Sv < 25 rem Birth defects or miscarriage

Hair follicles 3 Sv 300 rem Loss of hair within 2 weeks

Skin 1 Sv 100 rem Radiation burns

Table 3. Approximate thresholds for radiation damage to most sensitive tissue types.
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6.2 Diagnostic Nuclear Medicine

Nuclear physics techniques, including X-rays, radioisotopes, positron-emission tomography, and
nuclear magnetic resonance, can be used to image organs and diagnose medical problems (Fig. 42)
[2, 10].

X-rays [Fig. 42(a)] have been used since their discovery to photograph bones within the body, since
bone is dense with high-Z calcium and hence attenuates X-rays much more than soft tissue does.
Disadvantages of plain X-ray photography or radiography are that (1) it yields a two-dimensional
image with no depth information and (2) it has difficulty distinguishing between soft tissue types,
for example to spot a tumor. To extend the capabilities of radiography, nonradioactive, high-Z
atoms that strongly attenuate X-rays can be temporarily added as a contrast medium in tissues of
interest. For instance, swallowing a viscous drink containing barium makes the gastrointestinal tract
stand out in X-ray photographs. A further elaboration of radiography is Computerized Axial
Tomography (CAT), in which a source emitting a fan of narrow X-ray beams rotates around
the patient, while an array of X-ray detectors rings the patient. (When X-ray detectors were more
expensive, the detector array was smaller and would also rotate to remain on the opposite side of
the patient from the X-ray source.) Computers can process all of the detector data to produce
three-dimensional images or two-dimensional image “slices” through the patient.

(a) X-rays 
Computerized Axial 
Tomography (CAT): 
X-rays from all sides 
    3D images 

1st human X-ray (1895) 

(c) Positron-Emission Tomography 
(PET) 

Uses radioisotope-labeled compounds 
that emit positrons (antimatter electrons) 

Positrons annihilate with nearby electrons 
to produce gamma rays, which are detected 

e- 
Nucleus 

undergoes 
β+ decay 

e+ 

Gamma ray 

Gamma ray 

(d) Nuclear Magnetic Resonance (NMR) 
= Magnetic Resonance Imaging (MRI) 

Involves no radiation 

Uses intense magnetic fields to identify different 
nuclei & track molecules of oxygen, glucose, etc. 

(b) Radioisotope-labeled compounds 
E.g., 99mTc emits gamma rays, has 6-hour half-life, 
and can be added to any molecules to track them 

Figure 42. Diagnostic nuclear medical techniques include (a) X-rays, (b) radioisotope-
labeled compounds, (c) positron-emission tomography, and (d) nuclear magnetic res-
onance.
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Radioisotope-labeled compounds taken up by certain tissues can help image those tissues or
measure their physiological activity [Fig. 42(b)]. 99mTc, a technicium isomer, is ideal for this
purpose since it can be added to almost any compound, it only emits a 140-keV photon that can
readily escape the body and be detected, and its half-life is just 6 hours, thus minimizing the dose
to the patient. Saline passed through a charge-exchange column with 99Mo can “milk” the 99mTc
decay product: 99Mo

66 hr−→ 99mTc (230)

Thus availability in hospitals is determined by the longer 66-hour half-life of the 99Mo instead of
the actual 6-hour half-life of the technicium. 99Mo can be obtained as a fission product [near the
low-mass peak of Fig. 26(a)] or it can be bred by bombarding 98Mo with neutrons. A collimated
scintillation detector can be scanned back and forth near a labelled organ to produce an image,
or for faster imaging, an array of many collimated detectors can be used as a gamma-ray camera.
Millimeter-scale lateral and depth resolution is possible with properly designed detectors.

Other radioisotopes serve specialized diagnostic functions. For example, 201Tl is used as a potassium
analog for cardiac and other studies, although its 68-80 keV photons are more difficult to detect
than the higher-energy photons from 99mTc. Moreover, iodine is readily taken up by the thyroid
gland, so a simple counter held near the neck after consumption of radioactive iodine can measure
thyroid activity. 123I, which can be produced in a cyclotron and decays with a 13-hour half-life via
electron capture with emission of only a 159-keV photon, is good for this purpose. An alternative
isotope is 132I, which has only a 2.3-hour half-life but can be milked from the 78-hour-half-life
fission product 132Te via a solvent that dissolves iodine but not tellurium. Sodium iodohippurate
containing radioactive iodine is excreted by the kidneys and thus can also be used to measure
kidney function via a simple counter. Finally, brain tumors often breech the blood-brain barrier, so
radio-labeled impurities added to the blood stream can accumulate there and identify the tumor.

Positron-Emission Tomography (PET) also employs radioisotope-labeled compounds, but the
radioisotope undergoes β+ decay, and the emitted positron promptly annihilates with a nearby
electron to produce back-to-back 511-keV photons [Fig. 42(c)]. The patient is surrounded with an
array of detectors, whose data is used to produce a three-dimensional image of the distribution of
the radio-labelled compound. Suitable radioisotopes are biologically relevant elements that have
fewer neutrons than normal, making them unstable to β+ decay. They include 11C (τ1/2 = 20
min), 13N (τ1/2 = 10 min), 15O (τ1/2 = 2 min), and 18F (τ1/2 = 110 min). For example, 15O2 or
18F-labelled glucose are useful for visualizing blood flow to organs such as the brain. Because of
their very short half-lives, these isotopes must be made at the medical facility in a cyclotron.

Nuclear Magnetic Resonance (NMR), or Magnetic Resonance Imaging (MRI), involves
no radiation [Fig. 42(d)]. The patient is placed in a strong static magnetic field Bo, which
causes a Zeeman splitting of nuclear spin states by an energy ∆E that depends on Bo and the
nuclear spin J . Different nuclides have different characteristic ∆E values for a given Bo; 1H, 13C
(present as 1.1% of natural carbon or administered artificially), and 17O (0.038% of natural oxygen
or administered artificially) are particularly easy to recognize. A second magnetic field B1 that
oscillates at frequency f is applied perpendicular to Bo. If f matches the resonance frequency of
a certain nuclide, f = ∆E/h, this perturbation facilitates transitions between spin states, causing
detectable energy absorption from the B1 field. (See Nonrelativistic Quantum Physics ?.? for
more details.) Monitoring absorption vs. frequency indicates the identities and amounts of various
nuclides, while their location can be deduced if Bo and hence the resonance frequencies vary
spatially within the patient. NMR fields have no known deleterious physiological effects, although
there should be no metal objects in or near the patient. Functional NMR may replace PET since
it offers the same real-time three-dimensional imaging capabilities without radiation exposure.
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6.3 Therapeutic Nuclear Medicine

Because cancer cells divide rapidly and are therefore very sensitive to radiation damage, radiation
is often used (usually with surgery and/or chemotherapy) to treat cancer (Fig. 43) [10]. Radiation
delivery methods such as external beam radiotherapy, brachytherapy, direct radioisotope adminis-
tration, and radioimmunotherapy strive to minimize the dose to the rest of the patient’s tissues.
Antiemetics such as prochlorperazine can minimize radiation sickness nausea during radiotherapy.

(a) (b) 

Figure 43. Examples of therapeutic nuclear medical techniques. (a) Radiation beams can
be focused on a tumor. (b) Sealed radioactive ”seeds” can be injected into a tumor, or antibodies
can guide radioisotopes to cancer cells.

External beam radiotherapy [Fig. 43(a)] focuses intense radiation on a tumor, usually daily
for a few weeks. Beta radiation from an electron accelerator cannot penetrate deeply and therefore
is used for surface tumors like skin cancer. Occasionally protons are used instead. X-rays from a
bremsstrahlung source or gamma rays from 60Co are commonly used for tumors within the body.
Neutron beams damage molecules by direct collisions, not formation of free radicals, and thus are
sometimes used on oxygen-starved tumors that are relatively resistant to other forms of radiation.

Brachytherapy involves injecting a sealed radioactive seed [Fig. 43(b)] into a tumor via a needle.
A β− or α-emitting radionuclide is used so that all the energy is deposited in the surrounding
tumor. Either the half-life is very short or the seed is removed after a certain period of time. For
example, 125I or 103Pd seeds are used to treat prostate cancer.

Direct radioisotope administration is possible when the cancer cells selectively take up a
certain element. Since the thyroid gland absorbs iodine, a hyperactive or cancerous thyroid can be
destroyed by a sufficient dose of radioactive sodium iodide. 131I, a fission product with an 8-day
half-life, is used for this purpose. (Conversely, people in danger of exposure to fission reactor waste
or fission bomb fallout should take nonradioactive iodine pills to saturate the thyroid and prevent
uptake of 131I, which could cause thyroid cancer in small doses or destroy a normal thyroid gland
in larger doses.) Similarly, 89Sr, another fission product with a 53-day half-life, is absorbed by bone
cells and thus is used to treat metastatic bone cancer.

Radioimmunotherapy uses radiolabeled antibodies that specifically bind to certain cancer cell
types. Suitable antibodies have been developed for leukemia as well as lung, colon, and breast
cancers. Depending on the radioisotope label, antibodies can be used for either diagnosis or therapy.
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6.4 Other Applications

Other applications of nuclear physics include radioactive dating (Fig. 44), as well as sterilization,
smoke detectors, radioisotope thermoelectric generators, neutron activation analysis, and particle-
induced X-ray emission (Fig. 45) [1, 2].

14N 14C 

Solar radiation in 
upper atmosphere 

Incorporated 
into plants during 

photosynthesis 
Incorporated 

into animals that 
eat the plants 

14CO2 

(a)  Carbon-14 dating 

Half-life for 14C is 5730 years 
(not replaced after death) 

(b)  Potassium/argon dating 

Potassium-40 decays to argon-40 with 
1.25 billion year half-life 

Argon-40 freely escapes from molten 
lava but not from solid rock 

Argon-40/potassium-40 ratio indicates 
age of solidified lava 

Figure 44. Radioactive dating. (a) Carbon-14 dating. (b) Potassium/argon dating.

Radioactive dating (Fig. 44) can be used to determine the age of an object such as a rock or
biological material, provided that the object contained a known amount of radioisotope when it was
formed. The best-known example is radiocarbon or 14C dating. Cosmic rays transmute some 14N
into 14C in the upper atmosphere. Living organisms acquire carbon from atmospheric CO2 either
directly (for plants) or indirectly from other organisms, and approximately 1×10−12 of their carbon
is 14C. The decay rate of the 14C (τ1/2 ≈ 5730 years, or 13.5 decays/min per gram of total carbon)
is balanced by intake of fresh carbon when an organism is alive, but not after it dies. For samples
less than ∼ 50, 000 years old, the 14C content can generally be measured by a radiation counter.
For older or unusually small samples with very little 14C, a particle accelerator can be used as a
mass spectrometer, distinguishing the charge and mass of different ions vaporized from the sample.
Analysis of tree rings and historical records indicates that the rate of 14C formation has remained
relatively constant, and thus 14C dating is fairly reliable. However, two problems complicate 14C
dating of biological matter formed after ∼ 1900 A.D. Burning of fossil fuels, in which all of the
14C has long since decayed, has added carbon to the atmosphere and diluted the relative amount
of 14C. On the other hand, above-ground nuclear explosions from 1945 to 1963 added a great deal
of 14C to the atmosphere. As shown in Fig. 44(b) and explained in more detail in Geology ?.?,
longer-lived isotopes such as 40K (τ1/2 ≈ 1.25 billion years) can be used to date rocks and estimate
the age of the earth.

Sterilization of medical products, medical waste, food, or other items [Fig. 45(a)] is frequently
accomplished via a high-energy electron beam, X-ray bremsstrahlung, or gamma rays from a source
such as 60Co.
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Figure 45. Other applications of nuclear physics include (a) sterilization, (b) smoke
detectors, (c) radioisotope thermoelectric generators, and (d) neutron activation anal-
ysis and particle-induced X-ray emission.

Smoke detectors [Fig. 45(b)] contain a small amount of 241Am (τ1/2 ≈ 433 years), which emits
5.6-MeV alpha particles that ionize air, making current flow between two closely spaced electrodes.
Smoke contains strongly ionized atoms that collide with the ionized air molecules and decrease the
current, triggering an alarm.

Radioisotope Thermoelectric Generators (RTGs) [Fig. 45(c)] are very small nuclear power
sources. They use long-lived radioisotopes such as 238Pu, which emits 5.6-MeV alpha particles
with a half-life of 86 years, corresponding to a power output of 0.6 Watts/gram. A thermoelectric
converter turns the decay heat into electricity. Small RTGs power cardiac pacemakers (∼ 300 µW
of power), while larger ones power the electronics on spacecraft going to the outer solar system,
which don’t require full-fledged fission reactors but are too far from the sun to use solar panels.

Neutron Activation Analysis (NAA) [Fig. 45(d)] involves bombarding a sample with thermal
neutrons to determine its composition. Neutron capture (n,γ) processes typically create short-lived
radioactive nuclei that decay via beta and/or gamma decay. Analysis of all the gamma rays and
their energies reveals the types and amounts of various nuclei in the original sample. Other than
the low-level, short-lived radioactivity, this method is nondestructive.

Particle-Induced X-ray Emission (PIXE), by comparison, involves bombarding a sample with
heavy or light nuclei to determine the composition. The charged bombarding nuclei can remove
inner electrons from nuclei in the sample. When outer electrons drop down to fill the vacancies in
the inner orbitals, they emit characteristic X-rays that identify the sample nuclei.
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