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I saw many herds of naked souls, who were all lamenting very miserably; and there
seemed imposed upon them a diverse law.

Some were lying supine upon the ground; some sitting all crouched up; and others
roaming incessantly.

Those that moved about were much more numerous; and those that were lying in
the torment were fewer, but uttered louder cries of pain.

Over all the great sand, falling slowly, rained dilated flakes of fire, like those of snow
in Alps without a wind.

As the flames which Alexander, in those hot regions of India, saw fall upon his host,
entire to the ground;

whereat he with his legions took care to tramp the soil, for the fire was more easily
extinguished while alone:

so fell the eternal heat, by which the sand was kindled, like tinder under flint and
steel, redoubling the pain.

Ever restless was the dance of miserable hands, now here, now there, shaking off the
fresh burning.

–Dante Alighieri, The Inferno, Canto XIV (ca. 1320)

...it gives me Occasion to mention some loose Notions relating to Heat and Cold,
which I have for some Time entertain’d, but not yet reduc’d into any Form. Allowing
common Fire as well as the Electrical, to be a Fluid, capable of permeating other
Bodies, and seeking an Equilibrium, I imagine some Bodies are better fitted by Nature
to be Conductors of that Fluid than others; and that generally those which are the best
Conductors of the Electrical Fluid, are also the best Conductors of this...

–Benjamin Franklin, letter to John Lining (April 14, 1757)

Overview

Thermal energy may be transferred from one place to another by several different mechanisms,
including conduction, forced convection, natural convection, condensation, boiling, and thermal
radiation. While heat transfer processes are sometimes so complicated that they must be measured
experimentally and expressed as empirical correlations, the emphasis here will primarily be on
developing simple physical models and analytical expressions for the various heat transfer mecha-
nisms. Applications of heat transfer technology include: thermal energy transport in heat engines
and refrigerators; cooling of integrated circuit chips, nuclear reactors, and engines; and insulation
of everything from thermos bottles to buildings.
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1 Conduction

As illustrated in Fig. 1, thermal energy may be transferred from one place to another by several
different mechanisms, including (a) conduction, (b) forced convection, (c) natural convection, (d)
condensation, (e) boiling, and (f) thermal radiation. This section will focus on conduction, in
which heat is transferred through matter by diffusion. The remaining forms of heat transfer will
be covered in order in Sections 2-6.

(a) Conduction (b) Forced Convection (c) Natural Convection 

(f) Radiation (e) Boiling (d) Condensation 

Nucleate 
boiling 

Transition 
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Figure 1. Modes of heat transfer include (a) conduction, (b) forced convection, (c)
natural convection, (d) condensation, (e) boiling, and (f) thermal radiation.

1.1 Fundamentals of Conduction

In this and the following sections, Q is defined to be the rate of heat energy flow; it is measured
in Watts. The heat flux due to a heat flow Q spread over a cross-sectional area of A is q ≡ Q/A,
which has units of Watts/m2.
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Since heat energy flows from hot regions to cold regions, and since a greater temperature difference
leads to a greater heat flow, the heat flux in the presence of a temperature gradient ∇T is

q = −κ∇T , Fourier’s law of conduction (1)

in which κ is the thermal conductivity [W/moK] of the medium through which the heat is flowing.

Conductive heat transfer is due to three separate mechanisms:

1. Thermal energy may be carried by electrons, if the electrons are free to move throughout a
substance, as is the case with metals and plasmas.

2. Heat energy may also be carried by vibrations in the substance (called phonons); this is
especially significant if the substance is arranged into an organized solid lattice which can
vibrate.

3. If the substance is an amorphous solid or a fluid, heat energy may also be carried by particles
of the fluid which randomly migrate through the fluid and transfer their energy to other
particles within the fluid by collisions. This is a less efficient mechanism of heat transfer and
thus accounts for the generally lower thermal conductivities of substances that have neither
free electrons nor lattices.

Because solid metals have both free electrons and a lattice structure, they generally have large
thermal conductivities. Table 1 lists the thermal conductivities and their explanations for a wide
range of materials. For a more detailed look at the mechanisms of conductive heat transfer, see
Solid State Physics, Materials Science, and Plasma Physics and Fusion.

Material κ (W/moK) Explanation

Diamond 1300 Nonmetal but great lattice
Copper 400 Metal

Aluminum 240 Metal
Iron 80 Metal
Steel 20 Metal but not pure

Mercury 8 Metal but no lattice
Ceramic 4 Lattice

Glass 1 No lattice
Wood 0.1 No lattice
Cork 0.04 Air pockets

Table 1. Thermal conductivity κ for various materials.

The higher a material’s absolute temperature T (in degrees Kelvin), the more thermal energy (in
Joules) that material has. From Statistical Physics ?.? and Thermodynamics and Propulsion ?.?,
the specific heat capacity at constant pressure for a material is cp [J/kgoK]. If the mass density of
the material is ρ [kg/m3], the heat capacity will be Cp ≡ ρcp [J/oK], and the density u [J/m3] of
thermal energy in the material will be

u = CpT = ρcpT (2)
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The total change in the thermal energy density, the change due to heat diffusion, and the change
due to heat sources or heat sinks may be written as:(

du

dt

)
total

= Cp
∂T

∂t
= ρcp

∂T

∂t
net local increase of thermal energy (3)

(
∂u

∂t

)
diffusion

= −∇ · q = κ∇2T heat diffusing into/out of control volume (4)

(
∂u

∂t

)
other

≡ S other (explicitly defined) thermal sources/sinks (5)

Putting these three terms together, the conservation equation for thermal energy is:(
du

dt

)
total

=

(
∂u

∂t

)
diffusion

+

(
∂u

∂t

)
other

ρcp
∂T

∂t
= κ∇2T + S

∂T

∂t
= α∇2T +

S

ρcp
, (6)

where the thermal diffusivity α ≡ κ/ρcp [m2/sec] is simply the diffusion constant for heat energy
which is moving around via thermal conduction.

Some special cases of Eq. (6) deserve mention:

• If the system is in steady state (∂T/∂t = 0) without explicit thermal sources or sinks (S = 0),
Eq. (6) assumes the form of Laplace’s equation. This case will be considered in Section 1.2.

• If the system is in steady state (∂T/∂t = 0) but thermal sources or sinks are present (S 6= 0),
Eq. (6) reduces to the form of Poisson’s equation, as will be discussed in Section 1.3.

• If the system is not in steady state (∂T/∂t 6= 0) and there are no sources or sinks (S = 0),
Eq. (6) reduces to a simple diffusion equation, as will be shown in Section 1.4.

Whatever form Eq. (6) takes, in constructing T (x) solutions for it for adjoining regions, at the
boundary between the regions one must match both T (due to continuity of temperature) and
n̂ · ∇T (due to continuity of heat flux, with n̂ defined as the unit vector normal to the boundary).
Three different boundary conditions on T which are often used with Eq. (6) are:

1. T may be a known constant at a boundary.

2. A surface may be adiabatic, so that q · n̂ = 0, or n̂ · ∇T = 0, at the surface.

3. The heat flux at a boundary may be a fixed nonzero constant, so n̂ · ∇T at the boundary will
be a nonzero constant.
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1.2 Steady State with No Internal Heat Generation

For the steady state with no sources or sinks, Eq. (6) takes the form of Laplace’s equation:

∇2T = 0 Laplace’s equation (assumes S = 0 and ∂T/∂t = 0) (7)

The heat flow Qi→o from the inside to the outside of a hollow shell may be analyzed for various
geometries. It will be assumed that Ti is the temperature at the inner surface of the shell and To
is the temperature at the outer surface. By defining a thermal resistance R for the shell, the heat
flow may be written in a form similar to Ohm’s law (I = ∆V/R for an electric current I analogous
to Qi→o, voltage difference ∆V comparable to Ti−To, and electrical resistance R analogous to the
thermal resistance), as illustrated in Fig. 2(a):

Qi→o =
To − Ti
R

(8)

For a slab of thickness L and area A, as shown in Fig. 2(b), Eqs. (7) and (1) may be solved to find
the temperature profile, heat flow, and thermal resistance:

d2T

dx2
= 0 → T (x) = Ti + (To − Ti)

x

L
(9)

Qi→o = −κA
[
dT (x)

dx

]
x=0

=
κA

L
(To − Ti) =

To − Ti
Rslab

(10)

Rslab ≡ L

κA
(11)

Similarly, for a cylindrical shell with inner radius ri, outer radius ro, and length L � ro, as
illustrated in Fig. 2(c), one finds:

1

r

d

dr

(
r
dT

dr

)
= 0 → T (r) = Ti + (To − Ti)

ln(r/ri)

ln(ro/ri)
(12)

Qi→o = −κ(2πriL)

[
dT (r)

dr

]
r=ri

=
2πLκ

ln(ro/ri)
(To − Ti) =

To − Ti
Rcyl

(13)

Rcyl ≡
ln(ro/ri)

2πLκ
(14)

For a spherical shell with inner radius ri and outer radius ro, as shown in Fig. 2(d), the results are:

1

r2

d

dr

(
r2dT

dr

)
= 0 → T (r) = Ti + (To − Ti)

(
1/ri − 1/r

1/ri − 1/ro

)
(15)

Qi→o = −κ(4πr2
i )

[
dT (r)

dr

]
r=ri

= 4πκ

(
1

ri
− 1

ro

)−1

(To − Ti) =
To − Ti
Rsphere

(16)

Rsphere ≡
1

4πκ

(
1

ri
− 1

ro

)
(17)

For more information on solutions of Laplace’s equation, see Applied Mathematics ?.?.
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Figure 2. Conductive heat transfer in simple geometries with no internal heat gen-
eration. (a) The heat flow Qi→o may be modelled as an electric current driven by a “voltage”
difference Ti−T−o across a resistance R. Temperature gradients across (b) a slab, (c) a cylindrical
shell, and (d) a spherical shell drive heat flow.
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In certain cases the boundary between two substances also has a thermal resistance. This may be
a contact resistance between two adjacent solid objects or a convective resistance between a solid
surface and a fluid. These situations may be described by a heat transfer coefficient h:

q = h∆T Newton’s law of cooling (18)

in which ∆T is the temperature difference across the boundary.

For cases described by Eq. (18), the thermal resistance of the boundary may be defined as

Rboundary =
1

hA
, (19)

where A is the area of the boundary.

Thermal resistances which are placed in series [Fig. 3(a)] or parallel [Fig. 3(b)] arrangements
may be analyzed in exactly the same fashion as series and parallel electrical resistance networks.
Thermal resistances R1 and R2 in series are equivalent to one resistance R1+R2, whereas resistances
R1 and R2 in parallel are equivalent to one resistance R1R2/(R1 +R2).

(a) 
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(b) 
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Qio 

R2 

Ti – To 
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Ti – To 

R1 + R2 

Ti To 

R2 

R1 

Qio 

Ti To 
R2 R1 

Figure 3. Thermal resistances in series and parallel behave like electrical resistances
in circuits. (a) Thermal resistances R1 and R2 in series are equivalent to one resistance R1 +R2.
(b) Resistances R1 and R2 in parallel are equivalent to one resistance R1R2/(R1 +R2).
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1.3 Steady State with Uniform Internal Heat Generation

For steady state systems with thermal sources/sinks, Eq. (6) takes the form of Poisson’s equation:

∇2T = −S
κ

Poisson’s equation (assumes ∂T/∂t = 0) (20)

Some cases of Poisson’s equation for heat conduction will be solved as illustrations, as shown in
Fig. 4. For simplicity it will be assumed that S represents uniform internal heat generation and
that the temperature at the surface of the substance in question is Toutside.

For a slab extending from x = −a to x = +a and infinite in the y and z directions, as shown in
Fig. 4(a), Eq. (20) yields:

d2T

dx2
= −S

κ
→ T (x)− Toutside =

1

2

S

κ

(
a2 − x2

)
(21)
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Figure 4. Temperature profiles in a (a) slab, (b) cylinder, and (c) sphere with uniform
internal heat generation.
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Likewise, for an infinitely long cylinder with radius ro, as depicted in Fig. 4(b), the temperature
profile is:

1

r

d

dr

(
r
dT

dr

)
= −S

κ
→ T (r)− Toutside =

1

4

S

κ

(
r2
o − r2

)
(22)

For a sphere of radius ro, as illustrated in Fig. 4(c), Eq. (20) produces the result:

1

r2

d

dr

(
r2dT

dr

)
= −S

κ
→ T (r)− Toutside =

1

6

S

κ

(
r2
o − r2

)
(23)

For fancier solutions of Poisson’s equation, see Applied Mathematics ?.?.

As an example of how all of this stuff may be used, consider the configuration in Fig. 5. A
cylindrical nuclear fuel rod is surrounded by inert cladding material, which is in turn surrounded
by cooling fluid.

Cooling fluid 
at ambient 

temperature Tfluid 

Cladding Fuel 

rclad 

rfuel 

hconv hcontact 

κfuel 

κclad 

The fuel rod and 
cladding both extend a 

distance L into the page. 

Figure 5. A nuclear fuel rod surrounded by an inert cladding and cooling fluid. There is
a thermal contact resistance between the fuel and the cladding, and a convective resistance between
the surface of the cladding and the cooling fluid.
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Consider the various sources of temperature drops between the center of the fuel rod and the
ambient cooling fluid:

1. If the fuel rod has uniform heat generation S, thermal conductivity κfuel, radius rfuel, and
length L, the temperature drop from the center to the outside of the fuel rod is given by Eq.
(22) as T (0)− T (rfuel) = Sr2

fuel/4κfuel.

2. From Eq. (19), there is a contact resistance Rcontact = 1/(2πrfuelLhcontact) between the fuel
and insulation.

3. If the fuel rod is surrounded by an insulating cladding layer of conductivity κclad, inner radius
rfuel, and outer radius rclad, the thermal resistance of this insulation as given by Eq. (14) is
Rclad = ln(rclad/rfuel)/(2πLκclad).

4. From Eq. (19), there is a convective resistance Rconv = 1/(2πrcladLhconv) between the insu-
lation and the bulk of the surrounding fluid.

In the steady state the heat flow out of the insulated rod must be equal to the total heat generated
in the fuel rod, Q = πr2

fuelLS. Thus the temperature at the center of the fuel rod relative to the
fluid temperature Tfluid is

T (0)− Tfluid = [T (0)− T (rfuel)] + [T (rfuel)− Tfluid]

=
1

4

S

κfuel
r2

fuel + Q (Rcontact +Rclad +Rconv)

=
1

4

S

κfuel
r2

fuel + (πr2
fuelLS)

[
1

2πrfuelLhcontact
+

ln(rclad/rfuel)

2πLκclad
+

1

2πrcladLhconv

]
.

(24)
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1.4 Non-Steady State with No Internal Heat Generation

If there are no explicit thermal sources or sinks, Eq. (6) reduces to a simple diffusion equation:

∂T

∂t
= α∇2T standard diffusion equation (S = 0) (25)

[For the diffusion of heat in a fluid which has flow velocity v, Eq. (25) must be modified to include
a convective derivative: (

∂

∂t
+ v · ∇

)
T = α∇2T . (26)

The convective derivative accounts for variations which are purely due to time and also variations
due to fluid motion downstream where conditions are different (see Fluid Mechanics and Aerody-
namics ?.? for more information).]

For an object which is not in the steady state, it is important to determine if the time scale of the
object’s temperature variations is dominated by either conduction within the object or heat transfer
at the surface of the object, or if both phenomena are important. For illustrative purposes, an object
subjected to convective cooling at its outer surface will be considered here, but this analysis may
be readily generalized to include other heat transfer mechanisms at the object’s surface. From
Newton’s law of cooling, the heat transfer coefficient h determines the convective heat flux between
the object and its surroundings, qconv ∼ h∆T , where ∆T is a characteristic temperature difference
for the system. On the other hand, Fourier’s law of conduction indicates that the conductive heat
flux through the object will vary like qcond ∼ κ∆T/Lc, in which a characteristic length Lc ≡ V/A
has been defined for the object in terms of the object’s volume V and surface area A. In order to
weigh the relative importance of these two effects, it is conventional to take their ratio and define
it as the Biot number:

Bi ≡ hLc
κ
∼ qconv

qcond
. (27)

For Bi� 1, conductive heat flow through the object proceeds much more rapidly than convective
heat transfer at the object’s surface. In this case one may use the lumped capacitance model,
which assumes that the temperature in the object is uniform and that the time constant τ for
temperature changes is determined by surface convection. For this case, one finds:

ρcpV
d(T − T∞)

dt
= −hA(T − T∞) , (28)

where the object has mass density ρ, specific heat capacity cp, volume V , temperature T , and area
A. The temperature of the surrounding fluid far from the object is T∞.

If the initial temperature of the object at time t = 0 is Ti, the solution of Eq. (28) is

T (t)− T∞ = (Ti − T∞)e−t/τ (29)

with τ ≡ ρcV

hA
(30)
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In their eternal quest to make things seem more mysterious by redefining everything in terms of
dimensionless numbers, heat transferists have defined a dimensionless Fourier number Fo, which
may be regarded as the ratio of the object’s heat conduction rate to its thermal energy storage
rate:

Fo ≡ αt

L2
c

=
κt

ρc(V/A)2
(31)

Using the Biot and Fourier numbers, Eq. (29) may be rewritten in the more cryptic form,

T − T∞ = (Ti − T∞)e−Bi Fo (32)

Enlightening, right? Thought so.

For Bi � 1 and Fo < 0.05, the slow pace of internal heat conduction is what determines the
temperature variations of the object. In this case one may use the semi-infinite solid model,
in which a “wavefront” of temperature change slowly creeps through the object. For a surface in
the x = 0 plane with a constant surface temperature Ts ≡ T (x = 0), the temperature profile which
satisfies Eq. (25) in a semi-infinite solid occupying the region x ≥ 0 is

T (x, t)− Ts = (Ti − Ts) erf

(
x

2
√
αt

)
(33)

Using Eq. (33), the heat flux qs at the object’s surface is found to be

qs ≡ −κ
[
∂T

∂x

]
x=0

=
κ (Ts − Ti)√

παt
(34)

As shown in [1-3], the semi-infinite solid model may also be solved for boundary conditions other
than constant surface temperature Ts, such as constant surface heat flux qs.

For Bi � 1 and Fo > 0.05, or for Bi ∼ 1, the solutions are not as clean and simple. Results for
these cases are given in [1-3] in the form of graphs and approximate series solutions.
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1.5 Fins

To cool an object better, fins are often added. By increasing the surface area of the object, the
fins can increase the amount of convective heat transfer from the object.

Consider a fin which extends out from an object in the x direction and has a length L, as shown in
Fig. 6. For simplicity, assume that the cross-sectional area A and perimeter P in the y − z plane,
as well as the thermal conductivity κ of the fin material, are constant all along the length of the
fin.

Ambient fluid temperature T∞  

Main body 
of object 

Temperature Tb  

(z axis points out of the page) 

Cooling fin 

y 

x 
L 0 

x 
L 0 

T 
Tb 

T∞ 

Assuming 
convection 
at tip of fin 

Figure 6. A body with base temperature Tb has a cooling fin that protrudes into a
fluid with an ambient temperature of T∞. The temperature steadily declines along the length
of the fin. The precise solution at the end depends on the boundary conditions at the fin’s tip.

If the fin is surrounded by a medium which has a temperature T∞ far from the fin and h is the
coefficient of heat transfer between the fin and the surrounding medium, Eq. (20) becomes

d2(T − T∞)

dx2
=

hP

κA
(T − T∞) . (35)
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Solutions of Eq. (35) are of the form

T (x) − T∞ = C1e
−mx + C2e

+mx , (36)

with m ≡

√
hP

κA
(37)

One needs to know the boundary conditions in order to determine the constants C1 and C2. Note
that the temperature in the fin tends to vary on a length scale of 1/m.

The total heat flow dissipated by the fin may be calculated by considering the rate of heat conduction
across the base of the fin, the boundary between the main body of the object and the fin:

Qfin = −κA
[
dT (x)

dx

]
x=0

. (38)

Generally the temperature at the base of the fin is known, T (x = 0) ≡ Tb, and it is then necessary
to find a boundary condition for the other end of the fin. The simplest boundary condition is
that the fin is infinitely long (or at least mL� 1), in which case

T (x)− T∞ = (Tb − T∞)e−mx (39)

Qfin = κAm (Tb − T∞) (40)

A different common boundary condition on the x = L end of the fin is that it is
insulated, which by Fourier’s law implies that [dT/dx]x=L = 0. This boundary condition
leads to the expressions

T (x)− T∞ = (Tb − T∞)
cosh[m(L− x)]

cosh(mL)
(41)

Qfin = κAm tanh(mL) (Tb − T∞) (42)

If instead convection at the fin tip is taken into account with heat transfer coefficient
h, the resulting expressions are:

T (x)− T∞ = (Tb − T∞)
κm cosh[m(L− x)] + h sinh[m(L− x)]

κm cosh(mL) + h sinh(mL)
(43)

Qfin = κAm
κm sinh(mL) + h cosh(mL)

κm cosh(mL) + h sinh(mL)
(Tb − T∞) (44)

One may define the thermal resistance of a fin as

Rfin ≡ Tb − T∞
Qfin

. (45)
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The fin efficiency ηfin is defined as the ratio of Qfin to the fin’s maximum possible heat dissipation
(Qmax) which would occur if the entire surface area Afin of the fin were at temperature Tb:

ηfin ≡
Qfin

Qmax
=

Qfin

hAfin(Tb − T∞)
(46)

For a fin with an insulated tip, Afin = LP and ηfin = tanh(mL)/mL. For a fin with an uninsulated
tip, Afin = LP +A.

Similarly, the surface efficiency η0 of an object with a fin is defined as the ratio of Qfin to the
object’s maximum possible total heat dissipation (Qtotal, max) which would occur if the entire surface
area Atotal of the object were at the temperature Tb:

η0 ≡ Qfin

Qtotal, max
=

Qfin

hAtotal(Tb − T∞)

= 1− Afin

Atotal
(1− ηfin) . (47)

The fin effectiveness εfin is defined as the ratio of Qfin to the amount of heat that would be
dissipated by the fin’s “footprint” (A) area on the object if the fin were not there:

εfin ≡ Qfin

hA(Tb − T∞)
. (48)

Clearly εfin should be greater than 1, or else one would be better able to dissipate heat by leaving the
area A of the object exposed instead of installing a fin of the same cross-sectional area protruding
from that region of the object.

For simplicity it has been assumed that the cross-sectional area and perimeter of the fin are uniform
along the fin’s length; for equations applicable to the more general case in which these assumptions
are not valid, see [1-3].
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2 Forced Convection

Heat flow in a fluid may involve a mechanism unavailable to solids, namely motion of the fluid,
or convection. In forced convection, which will be examined in this section, the fluid is forced
to move by some agency other than the heat transfer process itself. (Section 3 will treat natural
convection, in which the fluid’s motion is due to the heat transfer.) Forced convection situations
may be classified as external flow over objects or internal flow through hollow objects.

2.1 External Flow

Consider the case of forced convection involving external fluid flow over a flat plate, as shown in Fig.
7. The plate extends from x = 0 to x = L and has a width ∆z; the y axis extends perpendicularly
outward from the plate’s surface. Far from the plate, the fluid has a temperature T∞ and a velocity
v∞ parallel to the plate. The plate has a uniform surface temperature Ts.

As explained in the fluid mechanics summary, the fluid will form a hydrodynamic boundary layer
of thickness δh(x) along the surface of the plate. In a similar manner, a thermal boundary layer of
thickness δt(x) will also develop.

Ambient fluid temperature T∞ Uniform fluid velocity v∞ 

Plate with surface temperature Ts 

Plate has width Δz into the page 

y 

x y=0 

x=L 

Boundary layer 
thickness δh(x) 

Local boundary 
layer velocity 

vx(x,y) 

x=0 

Figure 7. Forced external convection over a flat plate. A hydrodynamic boundary layer of
thickness δh(x) and a thermal boundary layer of thickness δt(x) form at the surface of the plate.
(Only the hydrodynamic boundary layer is shown for simplicity.) At a certain distance along the
plate (determined by the Reynolds number), the boundary layer changes from laminar to turbulent
behavior.

If κ is the thermal conductivity of the fluid, the heat flux from the surface may be estimated as

q(x) ≈ κ
Tw − T∞
δt(x)

. (49)
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The whole problem reduces to finding the correct boundary layer thickness δ(x) to use in Eq. (49).
We’ll fill a couple of pages with scary math doing that.

But let’s procrastinate for a moment by just concocting alternate definitions of Eq. (49). Equation
(49) may be rewritten in the form of Newton’s law of cooling with a heat transfer coefficient h(x):

q(x) = h(x)(Tw − T∞) h(x) ≡ κ

δt(x)
. (50)

As another alternative, zealous heat transferists love to express convective heat transfer in terms
of a dimensionless Nusselt number Nu:

q(x) ≈ κ
Tw − T∞

x
Nux , where (51)

Nux ≡ x

δt(x)
=

h(x)x

κ
(52)

Okay, enough procrastination; let’s get on with the scary math. In order to find the thermal
boundary layer thickness δt(x), consider the thermal energy flux ρcp(T − T∞)vx flowing in the x
direction within the boundary layer, where ρ is the fluid density, cp is the specific heat capacity of
the fluid at constant pressure, and the temperature is measured relative to the temperature T∞ of
the fluid beyond the boundary layer. By integrating this thermal energy flux over the y (vertical)
and z (perpendicular to the page in Fig. 7) dimensions of the boundary layer, one obtains the total
current of thermal energy flowing within the boundary layer parallel to the wall. The heat flux q(x)
coming out of the wall at point x goes into increasing the thermal current within the boundary
layer:

q(x) ∆z =
d

dx

[∫ δt

0
dy ρ cp (T − T∞) vx ∆z

]
. (53)

For simplicity assume that the temperature and velocity profiles in the boundary layer are linear:

T − T∞ ≈ (Tw − T∞)

(
1− y

δt

)
; (54)

vx ≈ v∞
y

δh
. (55)

[Actually, by using Eq. (49), it has already been implicitly assumed that the temperature profile
in the boundary layer is linear.]

Substituting the right-hand sides of Eqs. (49), (54), and (55) into Eq. (53) and using the thermal
diffusivity α ≡ κ/ρcp, one finds

α

v∞
≈ δt

6

d

dx

(
δ2
t

δh

)
≈ δt

6

(
2
δt
δh

dδt
dx
− δ2

t

δ2
h

dδh
dx

)

≈ δt
6

(
δt
δh

dδt
dx

)
. (56)

On the last line of Eq. (56), it has been assumed that the hydrodynamic and thermal boundary
layer thicknesses are linearly proportional to each other, so that dδh/dx = (dδh/dδt)dδt/dx =
(δh/δt)dδt/dx. The validity of this assumption will be demonstrated shortly.
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Integrating Eq. (56) and assuming that δt = 0 at x = 0, it is found that

δt ≈
(

18δhαx

v∞

)1/3

. (57)

As derived in Fluid Mechanics and Aerodynamics ?.?, if the fluid’s kinematic viscosity is ν = µ/ρ
[m2/sec], where µ is the viscosity [kg/s·m], the hydrodynamic boundary layer thickness will be

δh ≈ 5

√
νx

v∞
=

5x√
Rex

, in which the Reynolds number is Rex ≡
v∞x

ν
(58)

or equivalently, x/v∞ ≈ δ2
h/25ν. The Reynolds number is a measure of how turbulent a fluid

flow is; flow is laminar for small Reynolds numbers and turbulent for large ones, as explained in
Fluid Mechanics and Aerodynamics ?.?. Substituting this result into Eq. (57) and approximating
(18/25)1/3 ≈ 0.9 as 1 for simplicity, one finds

δt ≈ Pr−1/3δh (59)

where the Prandtl number is

Pr ≡ ν

α
=

ν

κ/(ρcp)
=

cpµ

κ
(60)

Thus the thermal and hydrodynamic boundary layer widths are proportional to each other as was
assumed earlier. The Prandtl number of the fluid may be regarded as the ratio of the diffusion
constant for momentum (the kinematic viscosity) to the diffusion constant for thermal energy. For
air and most other fluids of interest, the thermal and hydrodynamic boundary layer widths are
quite comparable to each other, or Pr ≈ 1. Nonetheless, we’ll keep including the Prandtl number
just to keep everything as broadly applicable as possible.

Using Eqs. (59) and (58), Eq. (49) for the heat flux may be rewritten as

q(x) =
Pr1/3√v∞

5
√
ν

κ(Ts − T∞)√
x

= h(x)(Ts − T∞) with h(x) ≡ 0.2 Pr1/3 Re1/2
x κ/x (61)

A more rigorous version of this derivation would employ more complicated temperature and velocity
profiles than those in Eqs. (54) and (55), but it would only find a different numerical constant [1-3]:

h(x) = 0.332 Pr1/3 Re1/2
x

κ

x
(62)

The total heat transfer from the entire surface may be obtained from an averaged heat transfer
coefficient hL, so that Q = hLA(Ts − T∞) for a surface of area A, where

hL ≡ 1

L

∫ L

0
h(x)dx = 2h(x = L) = 0.664 Pr1/3 Re

1/2
L

κ

L
. (63)

Converting to those silly Nusselt numbers, h and hL become:

Nux ≡ h(x) x
κ = 0.332Re

1/2
x Pr1/3

NuL ≡ hLL
κ = 0.664Re

1/2
L Pr1/3

}
laminar flow over flat plate with uniform Ts (64)
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The boundary layer becomes turbulent for Rex ≥ Retransition ≈ 5 · 105 and the power dependence
of the heat transfer on Rex changes. In this case, the NuL must account for the laminar boundary
layer heat transfer at small x and the turbulent boundary layer heat transfer at large x [2, 3]:

Nux ≈ 0.03 Re
4/5
x Pr1/3

NuL ≈ 0.037 Pr1/3
[
Re

4/5
L −

(
Re

4/5
transition − 17.95Re

1/2
transition

)]  turbulent flow over flat
plate with uniform Ts

(65)

The precise numerical constants can vary somewhat if it is the surface heat flux which is uniform
instead of the surface temperature [1-3], if the surface is not perfectly smooth, etc.

These results may be applied to external flow over objects other than flat plates by modifying the
Nusselt number from Eq. (64) to include empirical fudge factors:

NuL = C1 + C2 f1(ReL) f2(Pr) Re
1/2
L Pr1/3 , (66)

in which C1 and C2 are constants of order unity, f1(ReL) and f2(Pr) are relatively weak functions,
and L is the object’s characteristic length. For cylinders and spheres, L = D. The modifications
of the Nusselt number are due to the fact that the boundary layer may be distorted as it moves
around the object and may even separate from the object’s surface. See [1-3] for more details.

An important application of forced external convection is heat transfer to vehicles reentering the
atmosphere from space [6]. For simplicity consider a spherical vehicle of radius R in laminar flow.
By simply adjusting the constant from Eq. (64) to account for the spherical geometry, one can use

NuL ≈ 2Re
1/2
R Pr1/3, or

q ≈ 2 Re
1/2
R Pr1/3 κ(T∞ − Ts)

R
(67)

For air, the Prandtl number is Pr ≈ 1 and may be ignored. At the high velocities typical of
reentry, the kinetic energy density of the flow ρv2/2 is converted to thermal energy density ρcpT∞,
producing a temperature T∞ ≈ v2/(2cp) just beyond the boundary layer that is much higher than
the surface temperature of the vehicle, T∞ � Ts. Using these approximations and the Reynolds
number ReR = ρvR/µ, Eq. (67) becomes

q ≈ κ/cp√
µ

√
ρ

R
v2.5 ≈ √µ

√
ρ

R
v2.5 (68)

in which Eq. (68) used the relation µ ≈ κ/cp from Pr = cpµ/κ ≈ 1.

The viscosity of air at high temperatures (or equivalently at high flow velocities) varies according
to Sutherland’s law:

µ ≈ 1.5× 10−6
√
ToK

kg

m sec
≈ 4× 10−8 vm/sec

kg

m sec
(69)

Combining Eqs. (68) and (69), the heat transfer becomes

q ≈ 2× 10−4

√
ρ

R
v3 W

m2
(70)

Of course, a reentering vehicle is generally not spherical, and the precise local and total heat transfer
rates will depend on the specific shape of the vehicle. However, Eq. (70) is extremely useful for
obtaining initial estimates of reentry heat transfer before doing more detailed calculations. For more
information on reentry and the implications of Eq. (70), see Fluid Mechanics and Aerodynamics
3.10 and [6].
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2.2 Internal Flow

Consider internal fluid flow in a circular pipe of diameter D = 2R. An average fluid velocity may
be defined from the mass flow rate, vavg ≡ ṁ/(πR2ρ). The Reynolds number of the flow is then:

ReD ≡
vavg D

ν
=

4ṁ

πµD
, (71)

As explained in Fluid Mechanics and Aerodynamics ?.?, the flow is laminar for ReD < 2300 and
turbulent for ReD > 2300. Laminar flow is hydrodynamically fully developed after a hydrodynamic
entry length 0.05 ReD D and thermally fully developed after a thermal entry length 0.017 ReD Pr D
[1-3]. (Hydrodynamic and thermal entry lengths are not very well defined for turbulent flow.)

For a cylindrically symmetric system with the z axis parallel to the pipe, vr = 0, and ∂/∂t = 0,
Eq. (26) becomes:

vz
∂T

∂z
= α

1

r

∂

∂r

(
r
∂T

∂r

)
. (72)

It is conventional to define an average bulk temperature Tb of the fluid as:

Tb ≡
∫ R

0 (ρvzcp)(T )(2πr dr)∫ R
0 (ρvzcp)(2πr dr)

. (73)

For fully developed flow with qw ≡ q(r = R) = constant, Tw ≡ T (R) and Tb will increase linearly
with z at the same rate. The thermal energy balance, 2πRqwdz = vavg(πR2)ρcpdTb, means that

∂Tb
∂z

=
∂Tw
∂z

=
∂T

∂z
=

2qwα

vavgRκ
. (74)

As derived in Fluid Mechanics and Aerodynamics ?.?, the velocity profile for fully developed laminar
flow is vz = 2vavg[1 − (r/R)2]. By inserting this profile and the result of Eq. (74) into Eq. (72),
one finds

4

[
1−

(
r

R

)2
]
qw
Rκ

= α
1

r

∂

∂r

(
r
∂T

∂r

)
. (75)

Integrating Eq. (75) twice, one obtains T (r) for hydrodynamically and thermally developed flow:

T =
qwR

κ

[(
r

R

)2

− 1

4

(
r

R

)4
]
− 7

24

qwR

κ
+ Tb . (76)

The last two terms on the right side of Eq. (76) are additive constants chosen to satisfy Eq. (73).

Evaluating Eq. (76) at r = R yields the temperature difference,

Tw − Tb =
11

24

qwR

κ
=

11

48

qwD

κ
. (77)
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Therefore the Nusselt number for fully developed laminar flow with constant qw is:

NuD ≡
hD

κ
≡ qwD

(Tw − Tb)κ
=

48

11
≈ 4.36 . (78)

For fully developed laminar flow with constant Tw instead of constant qw, the Nusselt number is
only slightly different [1-3]:

NuD ≡
hD

κ
≈ 3.66 (79)

For fully developed turbulent flow with constant Tw or constant qw, an empirical correlation is [3]:

NuD ≡
hD

κ
≈ (f/8)(ReD − 1000)Pr

1 + 12.7(f/8)1/2(Pr2/3 − 1)
, (80)

in which f ≡ (0.79 ln ReD − 1.64)−2 and all properties are evaluated at Tb.

For non-circular pipes with cross-sectional area Ac and perimeter P , use D ≡ 4Ac/P .
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2.3 Heat Exchangers

An important application of forced convective heat transfer is heat exchangers, which are designed
to transfer heat from one fluid to another.

A simple example of a heat exchanger is a circular pipe which has one fluid flowing through it and
another fluid flowing around it. If the pipe has inner diameter Di, outer diameter Do, length L,
and thermal conductivity κ, the total thermal resistance between the two fluids may be written as

1

UA
≡ 1

UiAi
=

1

UoAo

=
1

hiAi
+

1

hfouling, iAi
+

ln(Do/Di)

2πLκ
+

1

hfouling, oAo
+

1

hoAo
, (81)

in which Ai ≡ πDiL and Ao ≡ πDoL. Note that convection, conduction, and fouling resistances
have been included. The overall heat transfer coefficient U is basically just a net “h” for the system;
heat transfer gurus traditionally use a different letter just to sound more impressive and confusing.

To make all of this look even more impressive and confusing, Eq. (81) may be generalized for the
thermal resistance between the hot (subscript h) and cold (subscript c) sides of a heat exchanger
which may have fins and a geometry other than that of a circular pipe:

1

UA
≡ 1

UcAc
=

1

UhAh

=
1

η0,chcAc
+

1

η0,chfouling, cAc
+ Rwall +

1

η0,hhfouling, hAh
+

1

η0,hhhAh
(82)

Consider a parallel flow heat exchanger, as shown in Fig. 8(a); the fluids on each side of the heat
exchanger’s wall flow in the same direction. For the moment assume that the temperature Th of the
hotter fluid is constant all along the length of the heat exchanger, so that that fluid’s temperature
at the heat exchanger’s inlet is the same as at the heat exchanger’s outlet, Th,i = Th,o. If the colder
fluid has mass flow rate ṁc, specific heat cp,c, inlet temperature Tc,i, and outlet temperature Tc,o,
the heat transfer between the two fluids may be written as

Q = ṁc cp,c (∆Ti −∆To) , (83)

in which ∆Ti ≡ Th,i − Tc,i is the temperature difference between the fluids at the inlet and ∆To ≡
Th,o − Tc,o is the temperature difference at the outlet.

The temperature difference between the two fluids declines exponentially with position along the
heat exchanger, and the equation for this exponential decline may be turned around to provide an
expression for ṁc cp,c:

∆To = ∆Ti exp

(
− UA

ṁc cp,c

)
→ ṁc cp,c = − UA

ln(∆To/∆Ti)
. (84)

Substituting the expression for ṁc cp,c from Eq. (84) into Eq. (83), one finds:

Q = UA(∆T )lm , (85)

in which the log mean temperature difference (∆T )lm has been defined as:

(∆T )lm ≡
∆To −∆Ti

ln(∆To/∆Ti)
=

(Th,i − Tc,i)− (Th,o − Tc,o)
ln[(Th,i − Tc,i)/(Th,o − Tc,o)]

for parallel flow heat exchangers (86)
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Figure 8. Schematic illustrations of heat exchangers, showing (a) parallel flow and (b)
counterflow configurations. The diagram shows the inlet and outlet temperatures for both the
hot and cold fluids.

Although Eqs. (85) and (86) were derived using the assumption that Th,i = Th,o, they are also
applicable to cases in which Th,i 6= Th,o, as may be shown with a bunch more algebra [1-3].

For counterflow heat exchangers, in which the hot and cold fluids flow through the heat exchanger
in opposite directions as shown in Fig. 8(b), Eq. (85) is still valid provided that one uses an
appropriate expression for the log mean temperature difference. Since the inlet-end of the heat
exchanger for one fluid is now the outlet-end for the other fluid, it is necessary to switch the inlet
and outlet temperatures for one of the fluids. Rewriting Eq. (86) with the interchange of variables
Tc,i ↔ Tc,o, the log mean temperature difference for counterflow heat exchangers is found to be:

(∆Tlm) ≡ (Th,i − Tc,o)− (Th,o − Tc,i)
ln[(Th,i − Tc,o)/(Th,o − Tc,i)]

for counterflow heat exchangers (87)

For a counterflow heat exchanger with (ṁcp)c = (ṁcp)h, the temperature difference Th−Tc remains
constant along the length of the heat exchanger.

For any type of heat exchanger, the total heat transfer between the two fluids may be written as

Q = ṁhcp,h(Th,i − Th,o) = ṁccp,c(Tc,o − Tc,i) (88)

If (ṁcp)a � (ṁcp)b or if fluid “a” is undergoing a phase change in the heat exchanger, fluid “a”
may be treated as approximately isothermal, so that Ta,i ≈ Ta,o.
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Define (ṁcp)min to be the smaller of the two quantities (ṁcp)h and (ṁcp)c, and likewise define
(ṁcp)max to be the larger of those two quantities. The fluid which has the smaller value of (ṁcp)
will more rapidly approach the temperature of the other fluid. Once the fluid with the smaller
(ṁcp) reaches the temperature of the other fluid, no more heat transfer can take place. Thus the
maximum heat transfer which can possibly occur is determined by (ṁcp)min:

Qmax ≡ (ṁcp)min(Th,i − Tc,i) (89)

Because the temperature of the fluid with the larger (ṁcp) also approaches the temperature of the
fluid with the smaller (ṁcp), the actual heat transfer is less than the upper bound of Eq. (89).

A definition which will be useful in a moment is the number of transfer units (NTU):

NTU ≡ UA

(ṁcp)min
. (90)

Another useful quantity is the ratio of the heat capacities:

Cr ≡
(ṁcp)min

(ṁcp)max
. (91)

The effectiveness ε of a heat exchanger is defined as

ε ≡ Q/Qmax = fn (NTU, Cr, geometry) . (92)

Note that the effectiveness is only a function of NTU, Cr, and the geometry or type of heat
exchanger (parallel flow, counterflow, multipass, cross-flow, etc.).

By mucking through a fair amount of algebra and rewriting the earlier equations for heat exchangers,
the effectiveness relations for parallel flow and counterflow heat exchangers are found to be [2]:

ε =
1− exp[−(1 + Cr)NTU]

1 + Cr
for single-pass parallel flow heat exchangers (93)

ε =
1− exp[−(1− Cr)NTU]

1− Cr exp[−(1− Cr)NTU]
for single-pass counterflow heat exchangers (94)

Effectiveness relations for other types of heat exchangers may be found in [1-3]. With this effectiveness-
NTU method, the prerequisite knowledge needed for heat exchanger calculations includes the heat
capacities of the fluids instead of the outlet temperatures, as was the case for the log mean tem-
perature difference technique. This is usually an advantage.
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3 Natural Convection

In natural (or free) convection, the fluid’s velocity is supplied entirely by the thermal effects.
Simple analytical models of heat transfer during natural convection may be constructed for certain
cases, although for more complicated situations it is necessary to rely upon experimentally deter-
mined empirical correlations. Fortunately, the physical principles of natural convection and the
fundamental functional dependences of the heat transfer coefficient may be ascertained from the
analytical methods.

3.1 Natural Convection Along a Vertical Wall

As a simple example of natural convection, consider the situation shown in Fig. 9. A generally
motionless fluid at bulk temperature T∞ is in contact with a vertical heated wall of temperature Tw.
Fluid immediately adjacent to the wall is heated and expands, then rises along the wall’s surface
due to the buoyant effect of its lower density. This rising fluid forms a boundary layer between the
wall and the bulk of the fluid and hence affects the rate of heat transfer from the wall to the fluid.

Ambient fluid 
temperature 
T∞<Tw 

Wall with surface 
temperature Tw 

Wall has 
width Δz 

into the page 

y 

x 

y=0 

x=L 

x=0 

δ(x) 

Boundary 
layer 

vx(x,y) 

Figure 9. Natural convection along a heated vertical wall. The hydrodynamic and thermal
boundary layers are assumed to have the same width δ(x).
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As shown in Fig. 9, the x-axis may be chosen to run vertically along the wall, so that x = 0 at
the bottom and x = L at the top. The y-axis protrudes perpendicularly from the wall. It will be
assumed that the width of the wall in the remaining dimension is ∆z and that spatial variations in
this direction may be neglected. As an added simplification, it will be assumed that the fluid and
thermal boundary layers have the same thickness δ(x) in the y-direction.

If κ is the fluid’s thermal conductivity, the heat flux coming out of the wall may be estimated as

q(x) ≈ κ
Tw − T∞
δ(x)

. (95)

Thus in order to find the heat flux, it is necessary to calculate the boundary layer’s thickness. To do
this, one may consider the amount of kinetic energy per unit height contained within the boundary
layer. This energy changes as the fluid moves vertically and work is done on it by forces. Since the
work input is simply the sum of the forces integrated over the vertical distance, one finds that

d

dx

(
kinetic energy
per unit height

)
=

(
buoyancy force
per unit height

)
−
(

skin friction force
per unit height

)

d

dx

∫ δ(x)

0
dy ρ(y) v2

x(x, y) ∆z =

∫ δ(x)

0
dy g [ρ∞ − ρ(y)] ∆z − ν ρ(y = 0)

[
dvx
dy

]
y=0

∆z

d

dx

[
δ(x) ρ(y = 0) v2

x(x)
]
≈ δ(x) g [ρ∞ − ρ(y = 0)] − ν ρ(y = 0)

[
vx(x)

δ(x)

]
. (96)

ρ(y) is the fluid density at distance y from the wall, ρ∞ is the density far from the wall, ν is the
kinematic viscosity, and g ≈ 9.807 m/sec2 is the gravitational acceleration. The approximation
that has been made in Eq. (96) assumes that the boundary layer’s properties may be essentially
averaged over the layer’s width δ in the y direction so that only x-dependences remain.

Modeling the fluid as an ideal gas with constant pressure, one finds from the ideal gas law that
ρ ∝ 1/T . Therefore ∆ρ/ρ = −∆T/T , so the buoyancy term may be rewritten in terms of the
temperature difference across the boundary layer. With this change, Eq. (96) becomes

d

dx

[
δ(x) v2

x(x)
]
≈ δ(x) g

(
Tw − T∞
Tavg

)
− ν

vx(x)

δ(x)
, (97)

where Tavg ≡ (Tw + T∞)/2.

In order to solve for δ(x), it is necessary to eliminate the pesky unknown vx(x). As a very crude
approximation, one could assume that the boundary layer looks the same all the way up, so d/dx = 0
in Eq. (97) and the buoyancy and friction terms on the right-hand-side of Eq. (97) cancel each other
out. This approximation yields a boundary layer “terminal velocity” of vx ≈ g(Tw − T∞)δ2/νTavg.
In reality these terms do not exactly cancel, and the boundary layer width and velocity vary with
height x, so one must include a fudge factor C1 of order unity:

vx(x) ≈ C1
g (Tw − T∞) [δ(x)]2

ν Tavg
. (98)
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Substituting this expression for vx(x) into Eq. (97) and solving for δ(x), it is found that

δ(x) ≈ C2

[
1

g(Tw − T∞)/Tavgν2
x

]1/4

, with a redesigned fudge factor C2 ≡
[

4(1− C1)

5C2
1

]1/4

≈ C2 Gr−1/4
x x , where the Grashof number is Grx ≡

g(Tw − T∞)x3

ν2Tavg
(99)

Inserting this expression for δ(x) into Eq. (95), the heat flux may be written as

q(x) ≡ h(x)(Tw − T∞) =
Gr

1/4
x κ (Tw − T∞)

C2 x
, (100)

so the Nusselt number (basically the dimensionless heat transfer) is

Nux ≡
h(x) x

κ
=

1

C2
Gr1/4

x . (101)

Thus the heat transfer and Nusselt number are proportional to the fourth root of the Grashof
number. The Grashof number may be thought of as the ratio of the buoyancy force to the viscous
force acting on the boundary layer.

A more rigorous version of this derivation [2] confirms this dependence on the Grashof number,
provides the fudge factor C2, and also indicates that the heat transfer expression must be corrected
to account for variations of the Prandtl number Pr ≡ ν/α. (The inclusion of the Prandtl number
helps weigh the relative importance of fluid boundary layer effects and thermal boundary layer
effects.) The results of the rigorous derivation are:

Nux = 0.508

(
Pr2

0.952 + Pr

)1/4

Gr1/4
x

= 0.508

(
Pr

0.952 + Pr

)1/4

Ra1/4
x , where the Rayleigh number is Rax ≡ Pr Grx

NuL = 0.678

(
Pr

0.952 + Pr

)1/4

Ra
1/4
L . (102)

The Rayleigh number is the ratio of buoyancy and viscosity effects. If the convective boundary
layer is far more buoyant than viscous (large Rayleigh number), it will rise rapidly up the wall
and be rapidly replaced by fresh fluid, and the heat transfer (Nusselt number) will be large. If the
convective boundary layer is less buoyant and more viscous (small Rayleigh number), it will cling
to the wall and help to insulate it, and the heat transfer (Nusselt number) will be small.

Typically RaL > 105. For RaL < 105 some of the assumptions underlying the modeling of the
boundary layer break down, and a better empirical fit is obtained by adding a constant of order
unity to the right-hand side of the relations in Eq. (102). See [2, 3] for more details.

For Rayleigh numbers larger than roughly 109, the buoyancy force on the boundary layer is so great
that the boundary layer becomes hydrodynamically unstable and turbulent. Empirical correlations
suitable for this case are given in [3].

Nothing in all of the above equations actually requires the wall to be hotter than the surrounding
fluid, so these results may also be applied to boundary layers moving down refrigerated walls instead
of boundary layers moving up heated walls.
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3.2 Natural Convection in Other Situations

Another important example of natural convection is convective heat transfer involving the upper
surface of a horizontal heated plate or the lower surface of a horizontal refrigerated plate. In these
cases the boundary layer is unstable and keeps separating from the plate. The heated boundary
layer fluid rises away from the hot plate and the cooled boundary layer fluid falls down from the cold
plate. The situation created by these thermal effects–a heavy (cold) fluid unstably resting on top of
a light (hot) fluid–is known as the Rayleigh-Taylor instability [4] and is also encountered in very
different settings, such as plasma physics. The unstable, turbulent nature of the boundary layer
fluid separating from the surface and being replaced by fresh fluid rushing in makes the problem
extremely difficult to model analytically; one is generally forced to resort to empirical correlations.
Quite remarkably, the Nusselt number for these cases is still a constant of order unity times the
fourth root of the Rayleigh number, just as it was for the vertical plate [3]:

NuL = 0.54Ra
1/4
L , for RaL < 107 (103)

in which the characteristic length L of the plate is defined as the plate’s surface area divided by its
perimeter. At very large Rayleigh numbers (RaL > 107), the power dependence on the Rayleigh
number changes slightly [3]:

NuL = 0.15Ra
1/3
L , for RaL > 107 (104)

All fluid properties should be evaluated at an average temperature of Tavg ≡ (Tw + T∞)/2 unless
otherwise noted.

Empirical expressions for natural convection around surfaces of other shapes are given in [2, 3].
Generally these expressions are of the same form as has been discussed,

NuL = C3 + C4 f(Pr) Ra
1/4
L , (105)

in which C4 is a constant of order unity, f(Pr) is a relatively weak function of the Prandtl number,
and C3 is a constant of order unity which only becomes important at very low Rayleigh numbers.

For cases in which both natural convection and forced convection are present, one must decide if
either type of convection may be safely neglected. This determination may be made by comparing
the Grashof number (describing the magnitude of natural convection effects) and the Reynolds
number (or actually the square of the Reynolds number, describing forced convection effects). If
GrL � Re2

L, natural convection may be neglected. For GrL � Re2
L, one may neglect forced

convection effects. If GrL ∼ Re2
L, natural and forced convection must be considered simultaneously.

For methods of doing this, see [3] and the scientific literature cited therein.
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4 Condensation

When a cool surface is surrounded by a warm saturated gaseous vapor, some of the vapor may
condense into a liquid on the surface. The condensation process strongly affects the rate of heat
transfer from the vapor to the surface.

4.1 Laminar Condensation on a Flat, Vertical Surface

With reference to Fig. 10, consider a cool vertical wall with temperature Tw and height L which
is exposed to a saturated vapor with temperature Tsat and density ρv. On the wall the vapor will
condense into a liquid film layer of density ρl and thickness δ(x), in which x is the distance from
the top of the wall. When the vapor condenses into a liquid on the wall’s surface, it imparts to
the wall an energy of hfg Joules per kg of condensed liquid, where hfg is called the latent heat
of vaporization for the condensing substance. Thus the condensing vapor transfers heat to the
wall. For condensation of steam to water, hfg is approximately 2300 kJ/kg, depending on the
exact temperature. Because this value is so large, condensation can transfer a large amount of heat
energy.

x=L 

x=0 
y=0 

y 

Warm vapor at 
temperature Tsat 

Liquid 
condensate 

vx(x,y) 

Cool wall at 
temperature Tw 

Wall has 
width Δz 

into the page 

x 

δ(x) 

Figure 10. Condensation on a vertical wall. The layer of liquid condensate on the wall has
width δ(x). Initially the liquid flow within the layer is laminar. If the wall is tall enough and the
Reynolds number of the liquid condensate layer becomes large enough, the liquid flow within the
layer will eventually become first wavy laminar and then turbulent.
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In this section, all liquid properties are denoted by the subscript “l” and should be evaluated at a
film temperature of Tf ≡ (Tw + Tsat)/2. The subscript “v” denotes vapor properties evaluated at
temperature Tsat. The latent heat hfg should be evaluated at temperature Tsat.

If κl is the thermal conductivity of the liquid film, the heat flux imparted to the wall at position x
may be approximated as:

q(x) ≈ κl
Tsat − Tw
δ(x)

. (106)

Even if the actual vapor temperature far from the wall is greater than Tsat, the vapor temperature
will drop to Tsat at the surface of the liquid film, making Eq. (106) still valid. Therefore one should
always use Tsat instead of the actual vapor temperature if the vapor is superheated.

Thus, as with forced and natural convection, the entire problem comes down to calculating the
correct boundary layer thickness (or in this case film thickness) δ(x) to use in Eq. (106). To that
end, brace yourselves for more scary math.

The Navier-Stokes equation for the film layer may be simplified by assuming that the film is in
steady state and is sliding down the wall slowly enough that the inertia terms may be neglected. The
pressure gradient inside the film is set equal to the hydrostatic pressure gradient of the surrounding
vapor, dp/dx = ρvg, in which ρv is the density of the vapor and g ≈ 9.807 m/sec2 is the gravitational
acceleration. If y is defined to be the direction perpendicular to the wall and y = 0 at the wall’s
surface, one finds by successively simplifying the Navier-Stokes equation:

ρl

(
∂

∂t
+ v · ∇

)
v = ρlgx̂−

dp

dx
x̂ + µl

∂2vx
∂y2

x̂

0 ≈ ρlgx̂− ρvgx̂ + µl
d2vx
dy2

x̂

→ d2vx
dy2

≈ −(ρl − ρv)g
µl

. (107)

µl is the viscosity of the liquid condensate. Integrating Eq. (107) and using the boundary conditions
vx(y = 0) = 0 at the wall and [∂vx/∂y]y=δ = 0 at the film surface yields a parabolic velocity profile
in the fluid layer:

vx(y) =
(ρl − ρv)gδ2

2µl

[
2

(
y

δ

)
−
(
y

δ

)2
]
. (108)

Therefore the mass flow rate down the wall at position x (assuming a wall width ∆z perpendicular
to the page in Fig. 9) is

ṁ(x) =

∫ δ(x)

0
ρlvx(y)dy∆z =

ρl(ρl − ρv)gδ3∆z

3µl
. (109)

Differentiating Eq. (109), the additional mass flow per unit length due to condensation within the
region dx is:

dṁ(x)

dx
=

ρl(ρl − ρv)g∆zδ2

µl

dδ

dx
. (110)

The heat given to the wall at point x by the rate of condensation dṁ(x) within dx of that point is:

q(x) = hfg
1

∆z

dṁ

dx
=

hfgρl(ρl − ρv)gδ2

µl

dδ

dx
. (111)
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But the heat flow in terms of the film width is also given by Eq. (106). Using that fact, Eqs. (106)
and (111) may be combined to eliminate q(x) and produce a differential equation for δ(x):

κlµl(Tsat − Tw)

hfgρl(ρl − ρv)g
= [δ(x)]3

dδ

dx
. (112)

Integrating Eq. (112) and employing the boundary condition δ(x = 0) = 0, one finds

δ(x) =

[
4κlµl(Tsat − Tw)x

hfgρl(ρl − ρv)g

]1/4

. (113)

By substituting Eq. (113) for the film thickness into Eq. (106), the heat flux is found to be

q(x) = κl(Tsat − Tw)

[
hfgρl(ρl − ρv)g

4κlµl(Tsat − Tw)x

]1/4

. (114)

To improve the accuracy of Eq. (114), instead of hfg one should use a corrected value of the latent
heat of vaporization, h′fg, which accounts for the heat capacity of the condensing substance [2]:

h′fg ≡ hfg + 0.68cp,l(Tsat − Tw) = hfg(1 + 0.68Ja) , (115)

in which Ja ≡ cp,l(Tsat − Tw)/hfg is defined to be the dimensionless Jakob number. Generally
this correction is rather minor.

Thus the heat transfer coefficient is:

h(x) ≡ q(x)

Tsat − Tw
=

[
h′fgρl(ρl − ρv)gκ3

l

4(Tsat − Tw)µlx

]1/4

. (116)

The heat transfer coefficient averaged over the total height L of the wall is:

hL ≡ 1

L

∫ L

0
h(x)dx =

4

3
h(L)

=
4

3

[
h′fgρl(ρl − ρv)gκ3

l

4(Tsat − Tw)µlL

]1/4

(117)

≈ κl

(
g

ν2
l

)1/3
1.47

Re
1/3
δ

for Reδ < 30 (118)

in which the Reynolds number Reδ is defined as

Reδ ≡
4vavgδ

νl
=

4ṁ

µl ∆z
, (119)

and the condensation rate is

ṁ =
Q

h′fg
=

hL(L∆z)(Tsat − Tw)

h′fg
. (120)
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4.2 Nonlaminar Condensation on a Flat, Vertical Surface

Calculating the condensation on a vertical surface gets messy when turbulence becomes important,
and one must resort to empirical correlations. But at least it is comforting that the laminar case
may be solved analytically.

For intermediate Reynolds numbers, 30 < Reδ < 1800, the film of condensation is somewhat
affected by turbulence and is described as “wavy laminar.” The average heat transfer coefficient
for this case has been found from experimental studies to be [3]:

hL = κl

(
g

ν2
l

)1/3
Reδ

1.08Re1.22
δ − 5.2

for 30 < Reδ < 1800 (121)

For large Reynolds numbers, 1800 < Reδ, the condensate is fully turbulent and the average heat
transfer coefficient is given by the empirical relation [3]:

hL = κl

(
g

ν2
l

)1/3
Reδ

8750 + 58(Re
3/4
δ − 253)/

√
Pr

for 1800 < Reδ (122)

The form of Eqs. (121) and (122) may be compared with that of Eq. (118).

4.3 Condensation on Objects with Other Shapes

Condensation on objects of other shapes may be described by equations similar to those derived
for laminar condensation on flat vertical surfaces.

The equations for a vertical wall may be applied to a vertical cylinder provided that the maximum
film thickness is much less than the circumference of the cylinder [δ(L)� πD for cylinder of height
L and diameter D].

Furthermore, experimental studies have confirmed that laminar condensation on a horizontal cylin-
der or a sphere may also be described by Eq. (117) with minor changes to the numerical coefficient.
For a horizontal cylinder or a sphere of diameter D, the average heat transfer coefficient is [3]:

hD = C

[
ρl(ρl − ρv)gh′fgκ3

l

(Tsat − Ts)µlD

]1/4

, (123)

where the numerical coefficient C is 0.729 for a cylinder and 0.815 for a sphere.
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5 Boiling

When a hot surface is immersed in a cooler liquid and begins to boil the liquid, the rate of heat
transfer from the surface to the liquid is greatly affected by the boiling process. The exact nature
of the boiling process strongly depends on the excess temperature ∆Te ≡ Ts − Tsat, which is the
difference between the temperature of the surface Ts and the saturation temperature Tsat of the
fluid. As ∆Te is increased, Fig. 11 shows that a system passes through different behavioral regimes
which may be classified as free convection, nucleate boiling, transition boiling, and film boiling.
(Even if the liquid temperature far from the surface is less than Tsat, the liquid temperature near
the surface will reach Tsat, so one should always use Tsat instead of the actual liquid temperature,
if different.)

Excess temperature ΔTe = Ts – Tsat (°C) 
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Figure 11. A typical boiling curve for a heated solid surface in contact with water
at one atmosphere of pressure. The heat flux qs is plotted on a log scale versus the excess
temperature ∆Te ≡ Ts − Tsat, where Ts is the surface temperature and Tsat is the saturation
temperature of the water (100 oC). The figure shows the behavior of the heat flux in various
regimes: free (natural) convection, nucleate boiling, transition boiling, and film boiling.
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5.1 Nucleate Boiling

Nucleate boiling occurs for 5oC< ∆Te < 30oC for water. (Only free convection occurs for smaller
excess temperatures.) Nucleate boiling may be modeled as follows.

Consider a hemispherical gas bubble of radius R forming on top of a horizontal heated surface, as
shown in Fig. 12. If σ is the surface tension for the fluid (σ ≈ 0.06 N/m2 for water), the force
holding the hemispherical bubble to the heated surface will be

Fsurface tension = 2πRσ . (124)

This force increases linearly with R as the size of the bubble grows.

Downward surface 
tension force 

Downward surface 
tension force 

Upward buoyancy force 

Upward buoyancy force 

Upward buoyancy force 

Heated 
surface 

R Rcrit 

Figure 12. An illustration of nucleate boiling, showing the formation of vapor bubbles
on a heated surface immersed in a liquid. The upward buoyancy force on a growing hemi-
spherical vapor bubble of radius R < Rcrit is too small to pull the bubble away from the surface;
the downward surface tension force on the bubble is strong enough to keep the bubble bound to
the heated surface. When the bubble has grown to a size R = Rcrit, the upward buoyancy force
becomes equal to the downward surface tension force, and the bubble is ready to break away from
the surface.

On the other hand, the buoyancy force tending to pull the bubble away from the heated surface
increases like R3:

Fbuoyancy =
1

2

(
4

3
πR3

)
g(ρl − ρv) , (125)

in which g ≈ 9.807 m/sec2 is the gravitational acceleration, ρl is the density of the liquid phase of
the fluid, and ρv is the density of the gaseous vapor phase of the fluid. For boiling water, ρl ≈ 1000
kg/m3 and ρv ≈ 0.5 kg/m3
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Since the buoyancy forces increase much faster than the surface tension force as the bubble grows,
eventually the bubble will become large enough that its buoyancy pulls it free of the surface. This
occurs for a critical bubble radius R = Rcrit at which |Fbuoyancy| = |Fsurface tension|:

Rcrit =

√
3σ

g(ρl − ρv)
. (126)

Due to conservation of volume, the hemispherical bubble of radius Rcrit will form a spherical bubble
of radius 2−1/3Rcrit ≈ 0.79Rcrit when it breaks away from the heated surface, but this change is
small enough in comparison with other uncertainties in this crude calculation that it may be ignored.

If drag effects are neglected, once the bubble breaks away from the surface it will accelerate uni-
formly. Designating M to be the mass of a bubble of uniform density ρv, the acceleration may be
written as

a =
Fbuoyancy

M
=

g(ρl − ρv)
ρv

. (127)

It will be assumed that the bubble must rise by at least a distance of 2Rcrit above the heated surface
before a new bubble can form and subsequently be released by the same site on the surface. With
uniform acceleration a (distance = at2/2 after time t), the clearance time tclear required for the old
bubble to get clear of the surface by a distance of 2Rcrit is

tclear =

√
2(2Rcrit)

a
=

√
4Rcritρv
g(ρl − ρv)

. (128)

The thermal energy density removed from the heated surface by the bubbles is hfgρv, where hfg is
the latent heat of vaporization. (For conversion of water to steam, hfg ≈ 2300 kJ/kg.) Assuming
that the heated surface is covered by a layer of bubbles with an average thickness of Rcrit/4 (bubbles
grow slowly at first, so smaller bubbles predominate on the surface) and that these bubbles are
removed and replaced by new ones on a timescale of tclear, the maximum heat flux which the bubbles
can remove from the surface is

qmax ∼ (thermal energy density) (average thickness of bubble layer)

clearance time per bubble

∼ (hfgρv) (Rcrit/4)

tclear
=

1

8
hfgρv

√
g(ρl − ρv)Rcrit

ρv

∼ 31/4

8
hfgρv

[
σg(ρl − ρv)

ρ2
v

]1/4

. (129)

The result of this simple derivation is confirmed by more rigorous calculations and by experimental
results [2, 3]:

qmax ≈ 0.15hfgρv

[
σg(ρl − ρv)

ρ2
v

]1/4

. (130)

The actual numerical constant is somewhat variable, depending on various factors like the number
of imperfections on the heated surface which can promote bubble nucleation.

Using the values for water, Eq. (130) gives a maximum heat flux of 1.2 MW/m2. Thus boiling can
transfer an enormous amount of heat energy.
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An empirical expression for nucleate boiling heat transfer at lower values of (Ts − Tsat) is [3]:

q ≈ µlhfg

[
g(ρl − ρv)

σ

]1/2
[
cp,l(Ts − Tsat)

Cs,fhfgPrnl

]3

. (131)

Typically Cs,f ∼ 0.01 and n ∼ 1, but the precise values of these constants depend on the type of
fluid, the type of surface material, and the smoothness of the surface.

5.2 Transition Boiling

As the excess temperature increases through the transition boiling regime (30oC< ∆Te < 120oC
for water), the swirling mixture of gas and liquid above the heated surface increasingly impedes
bubbles trying to leave the surface. Therefore in the transition boiling regime, the heat transfer
rate decreases with increasing ∆Te, ultimately reaching a minimum value at ∆Te ≈ 120oC. This
effect may be incorporated into the simple physical model of boiling by assuming that bubbles
rising from the surface are subject to a drag force:

Fdrag =
1

2
CD

(
πR2

crit

)(ρl + ρv
2

)
v2 , (132)

in which CD is the coefficient of drag, πR2
crit is the cross-sectional area of the bubble, (ρl + ρv)/2 is

the average density of the turbulent mixture of liquid and gas through which the bubble is moving,
and v is the velocity of the bubble.

By setting this drag force equal in magnitude to the buoyancy force Fbuoyancy = (4/3)πR3
critg(ρl −

ρv), the terminal velocity of the bubbles is found to be

vterm =

√
16g(ρl − ρv)Rcrit

3CD(ρl + ρv)
. (133)

If the drag effects are large enough, a bubble will reach this terminal velocity long before it clears
the surface by a distance 2Rcrit to allow for new bubble formation. The clearance time is thus

tclear =
2Rcrit

vterm
=

√
3CD(ρl + ρv)Rcrit

4g(ρl − ρv)
. (134)

This clearance time leads to a minimum heat flux,

qmin ∼ hfgρvRcrit

2tclear
=

2√
3CD

hfgρv

√
g(ρl − ρv)Rcrit

(ρl + ρv)

∼ 2

31/4C
1/2
D

hfgρv

[
σg(ρl − ρv)
(ρl + ρv)2

]1/4

. (135)

A more rigorous analysis [2, 3] shows that the numerical constant is smaller than indicated in Eq.
(135) but that otherwise this result is correct:

qmin ≈ 0.09hfgρv

[
σg(ρl − ρv)
(ρl + ρv)2

]1/4

. (136)

The numerical constant in Eq. (136) is also rather variable and depends on the specific system.
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The phenomenon of boiling is actually more complicated than this simple analysis of bubbles
indicates. For example, bubbles commonly join together to form jets and columns of gas spurting
up from the heated surface. Moreover, a broad film of gas may be transiently established along the
surface, then collapse due to the Rayleigh-Taylor instability of the heavy liquid above the gas film.
Fortunately, these effects do not change the functional dependence of the quantities that have been
calculated; they only play a role in establishing the numerical coefficients which have been quoted.

To summarize the physical arguments, in transition boiling, there are so many bubbles rising that
they slow each other down by a factor of ∼

√
ρv/ρl and lead to a minimum heat transfer qmin

that is smaller than the maximum heat flux qmax by this same factor. Using values for water, the
minimum heat flux is qmin ≈ 20 kW/m2, far lower than the maximum qmax ≈ 1.2 MW/m2.

Transition boiling is a dangerous regime in which to operate a system. As the temperature of the
heated surface increases, the heat flux from the surface to the fluid decreases for the reasons which
have already been explained. This decrease in heat removal from the surface can cause the surface
temperature to increase further. Thus transition boiling systems are unstable to temperature
excursions and may accidentally reach the melting temperature of the surface.

5.3 Film Boiling

Film boiling, which occurs for 120oC< ∆Te for water, is almost precisely the mirror image of
laminar film condensation. A permanent film of vapor separates the bulk of the fluid from the
solid surface, and heat must be transferred across this gaseous layer. Liquid fluid may join the film
layer by changing phase, a process involving hfg (just as with condensation). Because of the very
strong parallels between film boiling and laminar film condensation, the entire derivation of Section
4.1 may be applied to film boiling provided that the liquid and vapor quantities are interchanged
(ρl ↔ ρv, etc.) and the numerical coefficients are adjusted to match experimental data. Thus the
average heat transfer coefficient for film boiling is

hfilm boil = C

[
ρv(ρl − ρv)gh′fgκ3

v

(Ts − Tsat)µvD

]1/4

, (137)

in which h′fg ≡ hfg + 0.8cp,v(Ts − Tsat), L is the characteristic length of the surface, and C is a
constant of order unity that depends on the geometry of the surface. For a spherical surface, L = D
and C = 0.67; for a horizontal cylinder, L = D and C = 0.62.

For Ts > 300 oC, radiative heat transfer across the vapor layer is also significant. The heat transfer
rates due to boiling and radiation cannot simply be added together, since there is “cross-talk”
between the mechanisms: both film boiling and radiation can alter the width of the vapor layer,
and both are affected by the width of the vapor layer. The total heat transfer coefficient h is [3]:

h
4/3

= hfilm boil
4/3 + hrad h 1/3 , or

h ≈ hfilm boil +
3

4
hrad for hfilm boil > hrad (138)

in which hrad is the radiation heat transfer coefficient as derived in the next section.
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6 Thermal Radiation

In addition to the means of heat transfer which have already been discussed, heat energy may also
be carried by thermal electromagnetic radiation.

6.1 Fundamentals of Thermal Radiation

Types of electromagnetic radiation, from longer to shorter wavelengths, include radio and mi-
crowaves, infrared, visible light, ultraviolet, and X- and gamma rays, as discussed in Electromag-
netism ?.?. With equal validity, the radiation may be regarded either as waves or as particles called
photons. The wavelength λ, frequency f , and speed c ≈ 3.00× 108 m/sec of the waves or photons
are related by

λ =
c

f
(139)

Hot objects “glow” by emitting a range of thermal electromagnetic radiation. The frequency is
proportional to the energy of the waves

E = hf , (140)

in which h ≈ 6.626× 10−34 J·sec is Planck’s constant.

In turn, the energy is proportional to the temperature (in degrees Kelvin) above absolute zero:

Energy per photon ∼ kBT , (141)

in which kB ≈ 1.380 · 10−23 J/oK is Boltzmann’s constant.

Since frequency is proportional to energy and energy is proportional to temperature, frequency is
proportional to temperature, f ∝ T . Using Eq. (139), this means that the wavelength of thermal
radiation is inversely proportional to the temperature:

λ ∝ 1

T
(142)

In other words, the number of waves (or equivalently the number of photons) per length is propor-
tional to the temperature. At higher temperatures, more waves or photons of thermal radiation fit
within a given length, as shown in Fig. 13(a).

Therefore, the number of photons that will fit within a three-dimensional volume varies like

Number of photons per volume ∝ T 3 , (143)

as shown in Fig. 13(b).

Using Eqs. (141) and (143), the radiative energy per volume is

Radiative energy per volume =

(
energy

photon

)
×
(

photons

volume

)
∝ T × T 3

∝ T 4 (144)

Note the extraordinary implications of Eq. (144)–an object that is twice as hot will emit 16 times
more power as thermal radiation.
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Wavelength λ ~ 1/T 
Waves per length ~ T 

Photons per length ~ T Photons per volume ~ T3 

(a) (b) 

Figure 13. The number of photons of thermal radiation per length or per volume
depends on the temperature T above absolute zero. (a). The number of waves or photons
per length is proportional to T . (b) The number of photons per volume is proportional to T 3.

A more rigorous derivation of thermal radiation (Statistical Physics ?.?) confirms Eq. (144) and
gives the relevant constant for the heat flux emitted as thermal radiation by a hot object:

q = εσSBT
4 Stefan-Boltzmann law for thermal radiation (145)

in which σSB ≡ π2k4
B
/60h̄3c2 ≈ 5.670×10−8 W m−2 (oK)−4 is the Stefan-Boltzmann constant and

ε is the object’s emissivity. Black surfaces are very good at both emitting and absorbing radiation
(ε = 1), so thermal radiation is often called “black body radiation.” Very reflective surfaces are
very poor at both emitting and absorbing radiation (ε = 0). Most realistic surfaces are somewhere
between these two extremes.

The total emitted power is the product of q from Eq. (145) and the radiating surface’s area.

As shown in Fig. 14, the thermal radiation is spread out over the spectrum with a spectral
distribution that depends on the temperature. From Statistical Physics ?.?, the spectral distribution
is

Radiant heat flux per wavelength = ε
2πhc2

λ5 exp(hc/λkBT )− 1
(146)

In the most general case, the emissivity is also a function of the radiation’s frequency.

The wavelength λpeak at which the greatest amount of radiation is emitted was found in Statistical
Physics ?.? to be

λpeak ≈
2.90× 10−3 m

T
Wien displacement law (147)

Therefore the temperature of an object may be estimated by the peak wavelength at which it is
glowing (provided that wavelength variations of ε are neglected). This result is simply the familiar
effect that as an object becomes hotter and hotter, its visible glow is first red, then shifts upward
in the spectrum through yellow and finally toward blue. Note that Eq. (147) agrees with the
earlier Eq. (142). Table 2 lists the temperature and peak wavelength of several sources of thermal
radiation.
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Figure 14. The spectrum of thermal radiation emitted by a hot object depends on the
temperature of that object.

Object T λpeak Radiation

Space 2.7oK 1.1 mm Microwave
Human 310oK 9.4 µm Infrared
Flame 1800oK 1.6 µm Near infrared
Sun 5800oK 0.5 µm Visible

Table 2. Thermal radiation from various sources.

The fraction of incident radiation that an object absorbs is the absorptivity α. Kirchoff’s law
states that an object’s absorptivity is equal to its emissivity, α = ε. If an object of temperature
T had α 6= ε and were enclosed by radiating surroundings of the same temperature T , the object
would have a net gain or loss of thermal energy. Since two things with the same temperature are
by definition in thermal equilibrium with each other and hence cannot have a net nonzero transfer
of heat energy from one to the other, it is clear that α = ε is required. This same argument applies
if the absorptivity and emissivity are wavelength dependent: α(λ) = ε(λ) for all wavelengths λ.

All incident radiation that is not absorbed must be reflected (assuming no transmission). Thus the
reflectivity is r = 1− α.
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6.2 Example: Calculation of the Earth’s Temperature from Scratch

As an example of the power of this theoretical analysis of thermal radiation, one may estimate the
average surface temperature of the earth by using a few basic astronomical values, as illustrated in
Fig. 15.

Rorbit 

Rearth 

Qsunearth 

θ 

Tsun 
Tearth 

Rsun 

Qearthspace 

Rsun 
Rorbit 

= tan θ 

Figure 15. Radiative heat transfer from the sun to the earth. The average surface
temperature of the earth may be estimated using a few simple parameters for the sun and the
earth.

The first step is to find the sun’s surface temperature from the Wien displacement law. The peak
solar wavelength occurs near the middle of the visible spectrum, λpeak ≈ 5 · 10−7 m, so Eq. (147)
indicates that the surface temperature of the sun is Tsun ≈ 5800 oK.

If the sun has emissivity εsun ≈ 1 and radius Rsun, the total thermal power it radiates will be

Qsun ≈
(
4πR2

sun

) (
σSBT

4
sun

)
. (148)

It will be assumed that the earth has a radius of Rearth, absorptivity and emissivity εearth, and orbits
the sun with an orbital radius of Rorbit. At the radius of the earth’s orbit, the sun’s thermal power
Qsun is spread out over an area of 4πR2

orbit. Because the earth’s cross-sectional area is πR2
earth, the

earth only intercepts and absorbs an amount Qsun→earth of solar power:

Qsun→earth = εearth
πR2

earth

4πR2
orbit

Qsun = εearth
R2

earth

R2
orbit

πR2
sun σSBT

4
sun . (149)
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If the earth’s average surface temperature is Tearth, the earth will re-radiate to space a power of:

Qearth→space =
(
4πR2

earth

) (
εearthσSBT

4
earth

)
. (150)

For the earth to be in thermal equilibrium, the amount of radiant heat it receives must be the same
as it emits. Setting Qsun→earth = Qearth→space, one finds:

Tearth =

√
Rsun

2Rorbit
Tsun . (151)

Using Rsun ≈ 7 · 108 m, Rorbit ≈ 1.5 · 1011 m, and the previously obtained result Tsun ≈ 5800 oK,
the average surface temperature of the earth is found to be

Tearth ≈ 280 oK = 7 oC. (152)

That’s actually a fairly good estimate when you average over the whole planet. It’s only about 8o

below the actual value. The actual average temperature is higher than our estimate because our
calculation did not include the greenhouse effect that traps solar heat in the earth’s atmosphere.
For more information on the greenhouse effect and more precise calculations, see Meteorology ?.?.

Note that only the ratio Rsun/Rorbit mattered. This ratio could be found from the angular width
2θ of the sun in the sky without resorting to fancy astronomical techniques to measure the two
radii separately, since Rsun/Rorbit = tan θ ≈ θ. The visual half-angle of the sun as seen from the
earth is θ ≈ 4.65× 10−3 rad = 0.266o.



44 Heat Transfer

6.3 Fancy Radiative Heat Transfer Calculations

In calculating the radiative heat flow from object i to object j, it is generally necessary to use a
view factor Fij , which is defined as the fraction of radiation from surface i that reaches surface j.
For the general situation illustrated in Fig. 16, the view factor is:

Fij ≡
1

Ai

∫
Ai

∫
Aj

dAidAj
cosβi cosβj

πs2
, (153)

in which s is the distance the radiation travels between the two surfaces, and βi and βj are the
angles between the radiation path and lines normal to surfaces i and j, respectively. The reason for
including the cosβi and cosβj factors is that radiative heat transfer has the greatest effect normal
to a surface and has no effect tangent to a surface. The 1/s2 factor is included because the radiation
intensity falls off like the inverse square of the distance, as shown explicitly in Section 6.2. In order
to limit the maximum view factor to 1, the expression must be divided by π, as shown.

Normal to i 

βi 

Surface i 
dAi 

Ti 

s = distance from i to j 

Normal to j βj Surface j 

dAj Tj 

Figure 16. Radiative heat transfer between surfaces i and j. The path taken by the
radiation is illustrated and compared with vectors normal to each surface. Radiation which is
emitted by one surface but not intercepted by the other surface is not explicitly shown.

View factors for various specific geometries have been calculated and are summarized in Fig. 17
and [2, 3, 5].
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(b) Convex surface enclosed within another surface 
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Figure 17. View factors for radiative heat transfer between surfaces i and j in some
simple configurations. See [2, 3, 5] for more examples.
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From the definition in Eq. (153) it is clear that the view factor obeys the relations:

AiFij = AjFji reciprocity relation (154)

∑
j

Fij = 1 summation rule (155)

The radiative heat flow between black bodies i and j (εi = εj = 1) is:

Qi→j = σSBAiFij(T
4
i − T 4

j ) . (156)

Note that the factor Ai in Eq. (156) cancels the factor 1/Ai contained within the definition of Fij .

For objects other than black bodies, the emissivities must also be taken into account. As a simple
example, consider two infinite plane surfaces 1 and 2 which are facing each other as shown in Fig.
18(a).

Surface 1 
Temperature T1 
Emissivity ε1 
Surface area A1 

Surface 2 
Temperature T2 
Emissivity ε2 
Surface area A2 

q1 

q2 

R1 

Q12 

R2 R3 

σSB(T1
4-T2

4) 

R1 = (1-ε1)/ε1A1 

R2 = 1/F12A1 

R3 = (1-ε2)/ε2A2 

(a) 

(b) 

Figure 18. Radiative heat transfer between two parallel plane surfaces. (a) The view
factor between the plates is F12. (For infinite plates, F12 = 1.) (b) The radiative heat transfer is
analogous to Ohm’s law for a circuit, as shown.



Heat Transfer 47

Let q1 and q2 be the radiant heat fluxes coming from surfaces 1 and 2 respectively in Fig.18(a).
q1 and q2 include the fresh energy radiated by each surface plus the incoming energy each surface
reflects:

q1 = ε1σSBT
4
1 + (1− ε1)q2 (157)

q2 = ε2σSBT
4
2 + (1− ε2)q1 . (158)

Combining Eqs. (157) and (158), the net heat flux between the surfaces is found to be:

q1→2 ≡ q1 − q2 =
σSB

(
T 4

1 − T 4
2

)
1
ε1

+ 1
ε2
− 1

= ε1ε2σSB

(
T 4

1 − T 4
2

) [
1 +

∞∑
n=1

(1− ε1)n(1− ε2)n
]
. (159)

Equation (159) shows that q1→2 may be interpreted as the heat flux ε1ε2σSB (T 4
1 −T 4

2 ) which passes
directly between the surfaces, plus the reflections of that heat flux which must make one or more
round trips bouncing back and forth between the surfaces before they are absorbed.

Alternatively, the Ohm’s-law-like interpretation shown in Fig. 18(b) states that the radiation “po-
tential difference” σSB (T 4

1 −T 4
2 ) must drive the heat flow Q1→2 ≡ A1q1→2 through three resistances

in series: the resistance (1 − ε1)/ε1A1 associated with getting through surface 1, the resistance
1/A1F12 between the surfaces, and the resistance (1− ε2)/ε2A2 to get through surface 2:

Q1→2 =
σSB

(
T 4

1 − T 4
2

)∑
resistances

=
σSB

(
T 4

1 − T 4
2

)
1−ε1
ε1A1

+ 1
A1F12

+ 1−ε2
ε2A2

. (160)

For F12 = 1 and A1 = A2, Eq. (160) reduces to Eq. (159). Equation (160) (with F12 = 1) also
applies if one surface is completely enclosed by the other. The Ohm’s law analogy for radiation is
especially useful for complex situations involving F12 6= 1 or more than two surfaces [2, 3].

Notice from Eq. (159) that an effective heat transfer coefficient hrad for radiation may be defined:

hrad ≡ q1→2

T1 − T2
=

σSB

(
T 2

1 + T 2
2

)
(T1 + T2)

1
ε1

+ 1
ε2
− 1

. (161)
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